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ABSTRACT

Recent advances in deep convolutional neural network have
lead to significant improvement over depth estimation from a
single image. However, training such networks usually needs
a large amount of high-quality labeled training data which is
difficult to collect. To alleviate it, a semi-supervised method
based on confidence learning is proposed to improve the re-
sults of depth estimation with additional unlabeled data. We
utilize the confidence map generated by a confidence network
to predict the trusty regions of depth estimations on unlabeled
data. These depth estimations are taken as pseudo ground
truth and used to train the depth network together with labeled
data. Experiments on NYU Depth dataset V2 show our pro-
posed semi-supervised method outperforms fully-supervised
method.

Index Terms— Depth estimation, confidence learning,
semi-supervised, self-training

1. INTRODUCTION

Depth estimation from a single image is the task to assign
a depth to each pixel in the image. It is essential to a wide
range of applications, such as scene understanding and 3D
reconstruction. Early works [1] [2] [3] for the task of depth
estimation from a single image usually learn depth based on
handcrafted features together with graphic models. This task
remains challenging because of scene appearance variants,
occlusion, and the lack of context understanding which are
hard to be represented by these features.

Recently, Convolutional Neural Network (CNN) based
methods have achieved astonishing performance and greatly
improved the accuracy of depth estimation [4][5][6][7][8][9].
However, CNN-based methods require an enormous amount
of training data. Though some consumer-level cameras such
as Kinect can be used to capture depth maps, it also costs
considerable expense and time.

To ease the effort of acquiring high-quality depth, we pro-
pose a semi-supervised method for the task of depth estima-
tion from a single image based on confidence learning. Our
proposed framework consists of two networks, i.e., depth net-
work and confidence network. The depth network takes a
single image as input and outputs a depth map which is a

typical network for depth estimation. The aim of the confi-
dence network is to predict a confidence map for the depth
map estimated by the depth network. The confidence map in-
dicates which regions in the estimated depth map are close to
the ground truth. Then we utilize the confidence maps as the
supervisory signal to guide the training of depth network us-
ing unlabeled images in a self-training manner. This idea is
inspired by the methods in semi-supervised classification [10]
where the class of unlabeled data with highest probability is
taken as pseudo true label. However, depth estimation is a
problem of regression instead of classification which means
we cannot take the probability as confidence. Therefore, we
propose to learn this kind of confidence for depth estimation
by a neural network. Here it is assumed that confidence learn-
ing is a relatively easier task than depth estimation.

At the beginning, we jointly train the two networks in a
supervised way. After the confidence network is trained well
enough, the estimated depths for unlabeled images with high
confidences are taken as ground truth depths and are used to
further train the depth network together with labeled data. By
adopting the proposed network, we show the depth estimation
accuracy can be improved by adding unlabeled images.

2. RELATED WORK

Depth estimation Recent state-of-the-art methods for depth
estimation from a single image are based on the rapid de-
velopment of CNN. Eigen et al. [4] propose a multi-scale
CNN for learning depth. Built upon this network, they [5]
further develop a more general network with a sequence of
three scales to refine predictions to higher resolution. Laina
et al. [6] propose a more powerful single-scale fully convolu-
tional residual network. The paper [7] presents a regression-
classification cascaded network which can improve depth
estimation results. To enforce spatial consistency of depth
maps, depth gradient and graphical models are commonly
used tools. A two-streamed CNN model is used in [8] to
predict depth and depth gradient, which are then fused to-
gether into an accurate depth map. Xu et al. [9] combine the
multi-scale CNN and continuous conditional random fields
together and realize joint training by a novel mean-field up-
dates. These methods are trained in a fully supervised way,
however, pixel-level annotations are usually expensive and
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Fig. 1. Overview of the proposed framework for semi-supervised depth estimation based on confidence learning.

difficult to collect.
Semi-supervised learning Some methods perform unsu-
pervised or semi-supervised depth estimation using stereo
images at training [11] [12]. In this case, the left-right consis-
tency is used as supervisory signal. But stereo images are also
difficult to be collected. In the problem of semi-supervised
classification, Lee [10] utilizes the maximum classification
output as pseudo label for each unlabeled sample while this
idea cannot be used for regression. In the task of semantic
segmentation, Hung et al. [13] utilize the spatial probability
map generated by a discriminator network as the supervi-
sory signal to guide the cross-entropy loss for unlabeled data.
However, this kind of probability map is difficult to represent
the real confidences for estimated labels.

3. ALGORITHM OVERVIEW

Fig. 1 shows the overview of the proposed algorithm. Our
framework is composed of two networks: the depth network
and the confidence network. The former can be any net-
work designed for depth estimation, e.g., Multi-scale CNN
[5], ResNet-UpProj [6]. Given an input image with dimen-
sion H ×W × 3, the depth network outputs the depth map of
size 1

4H ×
1
4W × 1 (small size due to memory concern).

Our confidence network is a fully convolutional neural
network with Conv-Deconv architecture, which takes the im-
age and estimated depth map as input and then outputs spatial
confidence map (between 0 and 1) with size of 1

4H×
1
4W×1.

Each pixel p of the confidence map represents whether the
estimated depth is accurate or not. For example, if the con-
fidence value for pixel p is close to 1, it means the estimated
depth for pixel p is likely to be close to the ground truth depth.

During the training process, we use both the labeled and
unlabeled images under the semi-supervised setting. When
using the labeled data, the depth network is supervised by
the standard distance loss with ground truth depth. We rep-
resent the ground truth confidence as the similarity between
estimated depth and ground truth depth. Then the confidence
network is supervised by the standard distance loss with this

ground truth confidence. Note that we train the confidence
network only with labeled data.

For unlabeled data, we train the depth network with the
proposed semi-supervised method. After obtaining initial es-
timated depth map of unlabeled image from the depth net-
work, we then obtain a confidence map by passing the es-
timated depth map through the confidence network. We in
turn treat this confidence map as the supervisory signal using
a self-training scheme to train the depth network in the next
epoch with a masked distance loss. The intuition is that this
confidence map indicates the local quality of the estimated
depth map, so that the depth network knows which regions to
trust for unlabeled data during training.

4. SEMI-SUPERVISED TRAINING WITH
CONFIDENCE LEARNING

In this section, we address the detailed learning scheme of
the depth and confidence networks, as well as the network
architecture.

Given an image In with size of H ×W × 3, we denote
the estimated depth map by the depth network as En which
has the size of 1

4H ×
1
4W × 1. For our fully convolutional

confidence network, it takes the down-sampled image In and
the estimated depth map En with the size of 1

4H ×
1
4W × 4

as input and outputs a confidence map Cn with the size of
1
4H ×

1
4W × 1.

4.1. Confidence Network Training

4.1.1. Training target for confidence network

We expect the confidence generated by the confidence net-
work could represent the accuracy of depth estimated by
the depth network, i.e., high confidence corresponds to high
depth accuracy. To achieve this training target, we first de-
fine the ground truth confidence for a pixel p according to
the relative error between estimated depth and ground truth
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depth:

Yn(p) = exp

(
−α|En(p)−Dn(p)|

Dn(p)

)
(1)

where Dn(p) is the ground truth depth of pixel p and α is
a constant. Yn(p) = 1 if the estimated depth is equal to
the ground truth depth. Then the corresponding loss function
reads as:

Lconf =
∑
n

∑
p

|Cn(p)−Yn(p)| (2)

By training the confidence network, it can predict a con-
fidence map for the depth map estimated by depth network.
If the confidences of some pixels are close to 1, it means the
corresponding estimated depths have great probability to be
close to the ground truth depths. We can select the depths
with high confidences as pseudo ground truth depths for un-
labeled images. Note that the ground truth confidence map
Yn is computed according to the depth map estimated by the
depth estimation, so it will be updated at training. This means
our confidence network is just learned for the depth network.
Along with the improvement of the depth network at training,
the confidence network is trained to predict accurate confi-
dence for current depth estimation.

4.1.2. Confidence network architecture

For the confidence network, we adopt a Conv-Deconv archi-
tecture. The first three convolutional layers have {128, 256, 512}
channels with kernel size {3, 4, 4} and stride size {1, 2, 2}
respectively. The following two deconvolutional layers have
{512, 256} channels with kernel size {4, 4} and stride size
{2, 2} respectively. All these layers are followed by Leaky-
ReLU. The last convolutional layer has one channel and is
activated by sigmoid function to produce a confidence map.
This architecture for the confidence network is simple than
most of the networks for depth estimation.

4.2. Depth Network Training

4.2.1. Training target for depth network

We propose to train the depth network via minimizing the su-
pervised and semi-supervised loss function:

Ldep = Lsup + λLsemi (3)

where Lsup and Lsemi denote the supervised depth loss and
semi-supervised depth loss, respectively. λ is a constant for
balancing the two losses.

4.2.2. Training with labeled data

We first consider the scenario of using labeled data. Give an
input image In and its ground truth depth map Dn, the super-
vised depth loss is defined as the distance between estimated

Table 1. The effectiveness of confidence learning. The
mean relative depth error is computed for different confidence
thresholds on unlabeled data.

Labeled Data Amount Tsemi rel
1/2 0.9 0.14
1/2 0 0.19
1/4 0.9 0.20
1/4 0 0.24

depth and ground truth depth:

Lsup =
∑
n

∑
p

|En(p)−Dn(p)| (4)

4.2.3. Training with unlabeled data

Now we consider the semi-supervised training with unlabeled
data. For unlabeled data, we cannot apply Lsup since there is
no ground truth depth available. Thus we propose to utilize
the trained confidence network by a self-training strategy. The
main idea is that the trained confidence network can predict
a confidence map Cm for an unlabeled image Im, and it can
infer the regions where the estimated depth results are close to
the ground truth. We then binarize this confidence map with
a threshold to highlight the trusty region:

Bm(p) =

{
1, if Cm(p) ≥ Tsemi;
0, otherwise. (5)

where Bm denotes the confidence mask and Tsemi is a thresh-
old to control the sensitivity of self-training process. We rep-
resent the current estimated depth for Im as D̂m. Then the
self-training ground truth is denoted as the masked estimation
results {D̂m,Bm} which will be used in the next training
epoch. The resulting semi-supervised loss is defined by:

Lsemi =
∑
m

∑
p

|Em(p)− D̂m(p)| ·Bm(p) (6)

For minimizing Eq. 6 we treat {D̂m,Bm} as constant, thus
Eq. 6 is just a masked distance loss. Note that the masked es-
timation results {D̂m,Bm} are updated for unlabeled image
Im at every training epoch. It means different trusty regions
for unlabeled images will be used to minimizing the semi-
supervised loss. This will help the depth network to avoid
overfitting caused by noisy masked depth estimations for un-
labeled data.

4.2.4. Depth network architecture

Almost all current CNN architectures involve a bottom-up
pathway, which computes a feature hierarchy consisting of
feature maps at several scales with a scaling step of 2, such as
the classic VGG [14] and ResNet [15]. In our paper, we adopt
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Table 2. Comparisons between fully supervised method and semi-supervised method on NYU Depth V2 test set.

Labeled Data Amount λ
Error(lower is better) Accuracy(higher is better)
rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

1/2 0 0.210 0.085 0.714 0.670 0.913 0.975
1/2 0.1 0.204 0.083 0.704 0.686 0.917 0.977
1/4 0 0.238 0.100 0.803 0.591 0.870 0.965
1/4 0.1 0.235 0.095 0.802 0.615 0.883 0.966

ResNet-50 model pre-trained on the ImageNet dataset as our
base model. Because the output is a high resolution map in
depth prediction, some forms of top-down pathway with up-
sampling are often required in order to obtain a larger depth
map. Here we explore the effective architecture proposed in
[16] for object segments, which uses a top-down architecture
with lateral connection to build an in-network feature pyra-
mid and makes prediction on the finest level. We extend it to
the task of depth estimation. In the top-down architecture, all
the 3 × 3 and 1 × 1 convolutional layers have 256 channels
except that the last 3× 3 convolutional layer has 1 channel to
output a depth map.

5. EXPERIMENTS

5.1. Implementation Details

We implement our model using the MXNet framework [17].
The depth network is trained using mini-batch SGD where
the momentum is 0.9 and the weight decay is 0.0005. The
initial learning rate is set to 0.001 and decreased by a polyno-
mial decay as mentioned in [18]. For training the confidence
network, we adopt Adam optimizer with the learning rate as
0.0002. For parameter setting, we set α to 5, the confidence
threshold Tsemi to 0.9 and the weight λ to 0.1.

The depth network and confidence network are trained
jointly for totally 100 epoches. To prevent the depth network
suffering from initial noisy depth and confidence, we empir-
ically start the semi-supervised learning after training for 40
epoches with labeled data. Note that confidence masks for
unlabeled data are updated at each training epoch and used
for semi-supervised learning at the next training epoch.

5.2. Evaluation Dataset and Metrics

To demonstrate the effectiveness of our proposed semi-
supervised learning method, we train our model on publicly
available NYU Depth V2 dataset [19]. This dataset contains
795 color-depth pairs for training and 654 for testing. The
RGB images are downsampled to 320 × 240 to form the
inputs of the depth network. Following [4], we augment the
training data by random scaling, flips, color and translation
which produces totally 7155 training image and depth map
pairs.

We evaluate our predictions using the same measures as
previous works [6] [8]: mean relative error (rel), root mean
squared error (rms), mean log10 error (log10) and accuracy
with threshold (δ <

[
1.25, 1.252, 1.253

]
).

5.3. Results on NYU Depth V2 Dataset

To illustrate the effect of confidence learning, we examine
the relationship between learned confidence and the accuracy
of estimated depth. We firstly select the depth estimations
for all unlabeled images with different confidence thresholds
Tsemi where we set it to 0.9 and 0 respectively. Then we com-
pute the relative depth error for these depth estimations using
ground truth. The results are listed in Table 1. Tsemi = 0
means all depth estimations are selected. Obviously, the depth
estimations with high confidence have smaller depth errors.
This manifests we can select the trusty depth estimations for
unlabeled images according to the confidence network. Taken
them as weak supervised signal, they can help the depth net-
work remember which regions are estimated accurately and
thus improve the estimation results in future training.

To validate our proposed semi-supervised learning scheme,
we randomly sample 1/2, 1/4 images as labeled data and use
the rest of training images as unlabeled data. Table 2 shows
the evaluation results with (λ = 0.1) and without (λ = 0)
semi-supervised learning on NYU Depth V2 dataset. We can
see that the semi-supervised loss brings consistent perfor-
mance improvement on all six metrics over different amounts
of training data. This verifies the effect of our proposed
semi-supervised method for depth estimation.

6. CONCLUSIONS

In this paper, we propose a semi-supervised method for depth
estimation based on confidence learning. We train a confi-
dence network to enhance the depth network with both la-
beled and unlabeled data. For unlabeled images, the confi-
dence maps generated by the confidence network act as the
self-training signal to refine the depth network. Experiments
on NYU Depth V2 dataset is performed to validate the effec-
tiveness of the proposed method. In the future, we will study
the performance as a large amount of unlabeled data are pro-
vided.
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