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ABSTRACT

Color Guided Depth image denoising often suffers from the
texture coping from the color image as well as the blurry ef-
fect at the depth discontinuities. Motivated by this, we pro-
pose an optimized color-guided filter for depth image denois-
ing from different types of noises. This is a new framework
that helps to mitigate the texture coping and enhance the depth
discontinuities, especially in heavy noises. This framework
consists of two parts namely depth driven color flattening
model and patch synthesis-based Markov random field model.
The first part which is a prepare step for the second part is
used to mitigate the texture coping problem that faces all color
guided methods. This first model consists of a modified joint
bilateral filter which is used to mitigate the noise from the
noisy depth image and an iterative guided bilateral filter that
is proposed to flatten the colors in the color image for mit-
igating the texture coping problem. Based on the first part,
Markov random field with an optimization technique is used
for mitigating the blurry effect. Experiments indicate that our
method outperforms counterpart filters with guided and non-
guided manners in terms of a variety of evaluation metrics.

Index Terms— Depth image, bilateral filter, MRF, depth
sensors

1. INTRODUCTION

Depth images are crucial in a variety of visual communication
and computer vision applications such as 3DTV broadcast-
ing [1], 3D reconstruction [2] and visual saliency [3]. These
depth images are often corrupted by a variety of noises that
degrade their quality which are necessary to support their ap-
plications. These noises appear through the acquisition or
transmission step such as Gaussian, speckle, and Salt and
Pepper (S&P) noises. Therefore, depth images denoising is
an essential task. To the best of our knowledge, the depth
image denoising research can be divided into two categories:

1) Depth image denoising without auxiliaries: In this
category, denoising process is performed on the depth image
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alone without other auxiliary. Typical local methods include
Bilateral Filter (BF) [4] and self Guided Filter (GF) [5]. Non-
local methods depend on non-local similarity in the depth im-
age such as Non-Local Means (NLM) method [6] and its vari-
ants [7, 8]. This kind of methods face the challenge of detect-
ing depth discontinuities and filling the hole pixels.

2) Depth image denoising guided by auxiliaries: If pri-
ors can be involved for guiding, the denoising performance
of depth image can be improved. In this category, methods
can be divided according to where priors come from, such
as depth images from neighboring views (i.e. multi-view
depth) or corresponding color images. Multi-view depth is
now a typical data representation adopted by MPEG, and
depth image denoising models guided by neighboring views
were proposed to process the quantization caused by com-
pression [9, 10]. For these methods, a new challenge of
misalignment arises among different viewpoint depth images.
To avoid that, color image guided models were proposed
because correspondence exists between color and depth im-
ages. Among these methods, including Joint Bilateral Fil-
ter (JBF) [11], Noise-Aware Filter for Depth Up-sampling
(NAFDU) [12] and Markov Random Field (MRF) based
model [13], color image is helpful in recognizing the depth
discontinuities in the noisy environment. However, fake
texture copying problem arises from this guide where tex-
tures should be found only in color instead of depth image.
Moreover, all these filter-based methods often suffer from the
blurry effect that appears along depth discontinuities [14].
Recently, deep learning based methods with using color im-
age as a guide were also proposed [15, 16, 17]. How can we
completely eradicate this texture coping problem becomes a
new challenge in the community of depth image denoising.
Motivated by this, we propose a new framework that also
depends on the color image guiding to denoise the corrupted
depth image in heavy noisy environment with mitigating the
texture coping and blurry effect problems. There are two
models involved in this framework, namely Depth Driven
Color Flattening (DDCF) model and patch synthesis-based
MRF model. In our method, the filter-based and MRF models
are used to highly mitigating the texture coping and blurry
effect problems respectively and finally, depth image is ob-
tained with little texture and blur. For evaluation, our method
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Fig. 1. Overview of the proposed framework.

is compared with guided and non-guided algorithms, and the
results indicate the effectiveness of our method.

2. THE PROPOSED FRAMEWORK

As shown in Fig. 1, our method consists of two models;
DDCF and MRF. The first model consists of Median Joint
Bilateral Filter (MJBF) and Iterative Guided Bilateral Filter
(IGBF). Patch synthesis-based MRF is useful for overcom-
ing the blurry effect that appears at the depth discontinuities
compared with all filter-based methods, so it is used in our
framework. However, MRF also suffers from the texture cop-
ing, so DDCF is proposed as a prepare step for overcoming
what MRF model faces, especially at heavy noises. So, our
framework has the benefits of both modified filter-based and
MRF models for overcoming the texture coping and blurry
effect. Our method works as follows: firstly, the noisy depth
image Z guided by the co-aligned color image I are applied
to MJBF which results the filtered depth image X . MJBF is
used to mitigate the noise and help our MRF model to work
better. Then, guided with the output of MJBF, the color image
is filtered iteratively by IGBF to flatten the colors in the color
image regions corresponding to the homogeneous regions in
the depth image. In other words, IGBF is used to smooth
the non-depth edges in the color image by converting it to an
image U like a cartoon. So, IGBF is useful for overcoming
the texture coping. At last, these outputs from the two filters,
which include X and U are taken for defining the data and
the smoothness terms of our MRF model respectively to get
the final depth image Y .

2.1. Depth Driven Color Flattening Model

Median Joint Bilateral Filter: Traditional color guided fil-
ters fail to denoise the depth image from S&P noise in addi-
tion to the hole pixels in the captured depth image. The best
solution for dealing with the salt and pepper noise and the
hole pixels is the median filter [18]. Motivated by the bene-
fit of the median filter for solving this problem, we propose
MJBF, where in which if the polluted depth pixels are a pure
black or a pure white, we take the median value of this pol-
luted pixel and its local neighborhood pixels in a w1 window
size. Note that the values of the pure black and the pure white
pixels are 0 and 1 respectively, where the noisy depth image

is normalized in the range {0,1}. In contrast, if the polluted
pixel is neither a pure black nor a pure white, we apply the
traditional JBF on the noisy depth image as follows:

Xp =

{
Median [Zq ,Zp] Zp ∈ {0, 1}, q ∈ Ωp

1
kp

∑
q∈Ωp

Zqfs(|p− q|)fr(‖Ipc − Iqc‖) Otherwise
(1)

where kp is the a normalizing factor given by

kp =
∑
q∈Ωp

fs(|p− q|)fr(‖Ipc − Iqc‖) (2)

where fs is the spatial domain kernel of the noisy depth im-
age and fr is the range domain kernel. All of these kernels are
Gaussian kernels where σs1 and σr1 are the parameters con-
trolling the fall off of weights in fs and fr respectively. p is
the center pixel in the kernel window wanted to be denoised,
q is every pixel in the local neighborhood area Ωp for pixel p,
and Zq is the depth value of the noisy depth image at pixel q.
Ipc and Iqc are the intensity values of the color image at pc
and qc, where pc and qc are the corresponding locations to p
and q in the noisy depth image.

Iterative Guided Bilateral Filter: The texture copying
is caused by the fact that algorithms can hardly recognize the
texture of object contour or details. Actually, object contour
is needed because it can be also depicted in the depth image,
while object details can not. To solve this problem, IGBF
is used to convert the color image to a cartoon-like image by
flattening the colors in the color image. This filter is guided by
the depth image resulting from MJBF and also has an iterative
manner with n iterations. The traditional iterative property of
BF (IBF) is good for mitigating the texture coping but in the
other hand causes smoothing for some of the depth edges,
especially when two objects at different sides of these depth
edges have a similar color. To solve this, we guide IBF by the
output of MJBF for enhancing the weak edges in the color
image that co-align the depth image edges. Moreover, the
guided property drives the colors flattening operation to be
happened in the corresponding regions to the depth smooth
regions. The proposed IGBF is specified by:

Upc
=

1

kc

∑
qc∈Ωpc

Iqcfs(|pc−qc|)fr1(‖Ipc
−Iqc‖)fr2(‖Xp−Xq‖)

(3)
where kc is the a normalizing factor and given by:

kc =
∑

qc∈Ωpc

fs(|pc − qc|)fr1(‖Ipc
− Iqc‖)fr2(‖Xp −Xq‖)

where fr1 and fr2 are the range domain kernels and fs is the
spatial domain kernel of the filtered depth image X . All of
these kernels are Gaussian kernels where σs2 , σrc and σrd
are parameters controlling the fall off of weights in fs , fr1

and fr2 respectively and w2 is the window size. pc is the cen-
ter pixel in the kernel window of the color image wanted to
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Table 1. Parameters for our proposed framework
Filter MJBF MRF IGBF

Parameters w1 σs1 σr1 c w2 σs2 σrc σrd n
Value 9 0.1 0.1 0.05 3 9 0.05 0.01 10

be denoised, qc is every pixel in the neighborhood area Ωpc

for pixel pc, and Iqc is the intensity value of the color image
at pixel qc. Xp and Xq are the depth values for the corre-
sponding locations of pc and qc in the filtered depth image X .

2.2. MRF Model

In our MRF model, MRF model [13] is modified to fit our
specific purpose. Based on the outputs of DDCF model, we
define MRF through the two potentials; the data term which
is the depth measurement potential and specified as:

Ed =

P∑
i=1

wd(Yi −Xi)
2 (4)

where wd is the weight for the data term, i is the index for all
pixels P in the filtered depth image X and the correspond-
ing pixels of the final depth image Y resulting from the MRF
model. The second potential (the smoothness term) is speci-
fied as:

Es =
∑
p

∑
q∈Ωp

wpq(Yp − Yq)2 (5)

where Ωp is the pixels set in the final depth image Y that
correspond to p’s neighborhood, Yp and Yq are the final depth
values at p and q respectively and wpq is the relative weight
between pixel p and every pixel q in Ωp as specified by:

wpq = exp(−c‖Upc − Uqc‖22) (6)

where c is a parameter whose value is used to govern the
smoothing degree in the final depth image Y and ‖Upc

−
Uqc‖22 is the square Euclidean distance between the intensity
values of the corresponding patches of the color cartoon im-
age U at pc and qc as follows. To get the final denoised depth
image, we compute the posterior mode of MRF instead of the
full posterior because the full one requires a lot of time for
convergence [13]. As the processing time is important for
real time applications, we use the fast CG algorithm [19].

3. EXPERIMENTAL RESULTS

In these experiments, we take 23 test depth images from
Middlebury [20] [21] and add to them four different types of
noise individually with the following parameters: For Gauss.,
we set the mean µ = 0, and the variance σ2 = 0.01. For
Gaussian with local variance (GaussLV), µ = 0 and the
variance is different from pixel to pixel σ2 = rand(M,N)
where M and N are the number of rows and columns of

Table 2. ∆PSNR of all methods for all types of noise
Num DataSets Metric Proposed JBF NAFDU CGF AMF MRF

1 Cones
Gauss. 11.2447 9.9874 10.7635 10.3265 10.784 6.7355

GaussLV 16.8714 12.8475 15.7775 13.8223 4.7025 0.088133
S&P 13.3466 10.9631 12.4756 11.9451 1.6207 2.0953

Speckle 12.8644 11.2059 12.6715 12.248 8.4912 7.1632

2 Teddy
Gauss. 13.0207 11.1045 12.2192 10.9688 12.3747 5.6667

GaussLV 16.5629 14.0279 12.0647 13.8898 3.3097 -1.3498
S&P 14.7863 11.7478 14.2985 11.5511 2.3791 -0.89773

Speckle 12.9469 10.6765 12.0501 10.5403 11.3095 6.918

3 Venus
Gauss. 20.5211 19.4429 15.6575 18.9865 16.7185 2.2614

GaussLV 12.3631 10.4651 2.6188 10.2522 1.7005 -3.4657
S&P 17.9616 17.286 15.5366 16.8834 0.9217 -8.036

Speckle 17.9168 17.5197 15.7881 17.5263 14.21 6.9234

4 Bowling1
Gauss. 7.2312 9.8373 9.743 11.2614 15.2662 1.1785

GaussLV 12.6345 10.9564 4.9705 10.9085 1.5162 -1.3428
S&P 9.013 11.388 12.7988 12.5831 1.4595 -8.0768

Speckle 8.3596 11.2633 13.3716 12.5401 9.2521 2.6648

5 Plastic
Gauss. 19.5021 19.2649 19.1111 19.0635 17.4792 6.987

GaussLV 18.1218 14.3022 12.6075 15.07 1.7063 0.34272
S&P 18.8507 18.4371 18.2497 18.6701 2.2929 1.2287

Speckle 20.9996 20.6817 20.3839 20.5466 9.6243 7.1299

Table 3. Comparison of different denoising algorithms gains
Num DataSets Metric Proposed JBF NAFDU CGF AMF MRF

1 Cones
∆RMSE -37.349 -34.169 -31.562 -34.937 -15.493 -9.600
∆SSIM 0.716 0.683 0.588 0.637 0.290 0.528

∆PE -8.655 -4.962 -3.232 -2.865 -5.356 22.040
∆PSNR 13.539 11.251 12.922 12.085 6.400 3.933

2 Teddy
∆RMSE -36.635 -34.211 -28.226 -34.040 -14.997 -1.748
∆SSIM 0.759 0.737 0.639 0.664 0.345 0.576

∆PE -15.628 -11.695 -2.740 -8.184 -9.270 24.331
∆PSNR 14.123 11.889 12.658 11.738 7.344 2.547

3 Venus
∆RMSE -35.051 -33.492 -21.882 -33.144 -14.001 20.525
∆SSIM 0.849 0.812 0.692 0.720 0.401 0.520

∆PE -20.389 -14.870 -2.334 -12.288 -20.335 25.179
∆PSNR 17.082 16.178 12.400 15.912 8.388 -0.659

4 Bowling1
∆RMSE -32.035 -32.705 -26.525 -33.537 -14.894 13.391
∆SSIM 0.760 0.750 0.725 0.659 0.320 0.659

∆PE -10.230 -7.094 -4.189 -3.868 -9.121 23.920
∆PSNR 9.5389 10.861 10.221 11.823 6.874 -1.404

5 Plastic
∆RMSE -40.876 -39.133 -34.480 -39.034 -16.872 -10.029
∆SSIM 0.816 0.779 0.774 0.703 0.339 0.750

∆PE -25.319 -17.791 -11.201 -12.362 -10.360 25.408
∆PSNR 19.346 18.171 17.588 18.338 7.776 4.019

6 Aloe
∆RMSE -30.652 -20.167 -28.961 -29.809 -11.138 17.064
∆SSIM 0.656 0.506 0.624 0.570 0.340 0.462

∆PE -3.435 3.391 -3.604 -0.414 -12.429 25.796
∆PSNR 9.574 8.945 8.877 9.715 5.794 -1.174

7 Art
∆RMSE -37.851 -32.503 -36.298 -36.701 -15.268 -9.418
∆SSIM 0.417 0.381 0.395 0.380 0.183 0.291

∆PE -15.531 -8.054 -11.778 -7.380 -10.255 24.121
∆PSNR 14.127 14.215 13.489 14.251 6.799 3.822

8 Baby1
∆RMSE -34.760 -23.977 -33.492 -33.970 -13.180 10.445
∆SSIM 0.816 0.705 0.793 0.715 0.385 0.662

∆PE -16.612 -4.665 -13.926 -13.150 -16.263 26.062
∆PSNR 13.677 12.147 13.234 14.462 7.571 0.371

9 Baby2
∆RMSE -35.748 -24.975 -33.800 -34.177 -14.151 9.873
∆SSIM 0.817 0.717 0.791 0.713 0.380 0.662

∆PE -19.974 -5.233 -15.648 -12.668 -14.277 26.212
∆PSNR 15.059 13.555 13.376 14.402 8.112 0.659

10 Bowling2
∆RMSE -36.820 -32.772 -33.697 -34.119 -15.619 -7.689
∆SSIM 0.740 0.693 0.725 0.630 0.280 0.674

∆PE -9.420 -7.654 -8.119 -3.496 -9.042 24.040
∆PSNR 12.649 13.255 10.436 10.835 6.678 2.864

11 Cloth1
∆RMSE -39.930 -30.339 -39.105 -38.508 -16.249 -4.723
∆SSIM 0.893 0.680 0.864 0.774 0.398 0.787

∆PE -23.806 0.445 -19.098 -12.909 -12.255 25.649
∆PSNR 20.351 14.717 19.641 18.406 9.490 3.273

12 Cloth2
∆RMSE -41.268 -37.188 -37.844 -37.294 -16.260 -19.310
∆SSIM 0.839 0.716 0.817 0.719 0.283 0.800

∆PE -10.556 -4.299 -7.286 -3.031 -2.921 21.911
∆PSNR 17.804 15.983 15.000 14.216 6.951 6.377

13 Cloth3
∆RMSE -38.924 -28.993 -37.152 -36.942 -15.486 -2.339
∆SSIM 0.841 0.682 0.814 0.741 0.357 0.732

∆PE -14.320 -2.260 -12.091 -8.309 -9.883 25.581
∆PSNR 18.138 14.239 16.166 16.123 8.018 2.831

14 Cloth4
∆RMSE -37.309 -32.742 -35.703 -36.134 -16.929 -8.665
∆SSIM 0.818 0.656 0.792 0.702 0.282 0.758

∆PE -11.300 -1.265 -9.683 -4.890 -7.703 23.861
∆PSNR 13.089 12.413 12.291 12.811 7.409 2.860

15 Lampshade1
∆RMSE -34.987 -27.675 -33.641 -35.221 -14.669 4.595
∆SSIM 0.770 0.729 0.740 0.681 0.327 0.644

∆PE -9.917 -7.449 -9.681 -9.153 -9.955 24.830
∆PSNR 12.197 12.709 11.767 14.098 6.820 0.833

16 Lampshade2
∆RMSE -36.603 -29.921 -35.162 -36.451 -15.606 -1.114
∆SSIM 0.810 0.779 0.780 0.697 0.328 0.713

∆PE -14.493 -7.968 -12.685 -9.771 -10.169 24.964
∆PSNR 13.516 14.257 12.832 14.760 7.166 1.939

17 Midd1
∆RMSE -35.955 -26.901 -34.318 -34.591 -15.230 4.961
∆SSIM 0.731 0.665 0.714 0.638 0.324 0.595

∆PE -10.208 -5.466 -10.071 -7.851 -11.236 25.069
∆PSNR 13.842 12.789 12.888 13.438 7.200 1.134

18 Midd2
∆RMSE -33.924 -23.789 -32.692 -33.148 -14.041 18.245
∆SSIM 0.699 0.636 0.686 0.617 0.319 0.521

∆PE -9.028 -0.959 -8.438 -7.389 -13.756 25.179
∆PSNR 12.741 11.967 12.595 13.387 6.937 -1.017

19 Monopoly
∆RMSE -30.609 -20.566 -30.309 -31.827 -13.008 32.964
∆SSIM 0.696 0.612 0.675 0.641 0.350 0.476

∆PE -5.332 -0.074 -5.216 -4.684 -14.208 25.098
∆PSNR 10.483 10.443 10.744 12.940 7.904 -3.356

20 Rocks1
∆RMSE -38.790 -30.071 -36.544 -36.125 -15.316 -4.621
∆SSIM 0.781 0.676 0.766 0.672 0.345 0.693

∆PE -19.535 -4.250 -14.519 -8.229 -9.875 25.742
∆PSNR 17.102 14.573 14.240 13.801 8.217 3.359

21 Rocks2
∆RMSE -38.852 -30.730 -36.381 -35.946 -16.702 -7.534
∆SSIM 0.782 0.671 0.763 0.665 0.413 0.705

∆PE -21.707 -3.538 -16.760 -10.017 -10.590 25.804
∆PSNR 16.867 14.659 13.436 13.210 9.282 4.225

22 Wood1
∆RMSE -38.708 -31.243 -37.028 -37.093 -15.110 -7.027
∆SSIM 0.867 0.807 0.843 0.713 0.351 0.788

∆PE -22.057 -7.751 -16.755 -9.424 -12.150 25.056
∆PSNR 16.085 14.344 14.878 15.096 7.699 3.602

23 Wood2
∆RMSE -39.829 -34.948 -37.024 -37.309 -16.509 -10.460
∆SSIM 0.853 0.804 0.820 0.702 0.303 0.785

∆PE -17.501 -9.428 -12.005 -6.505 -10.641 23.364
∆PSNR 16.214 15.475 14.160 14.734 7.426 3.572

Average
∆RMSE-Avg -36.656 -28.79 -34.907 -35.22 -15.075 1.213
∆SSIM-Avg 0.77 0.675 0.746 0.668 0.332 0.651

∆PE-Avg -14.283 -4.355 -11.469 -7.776 -10.959 24.874
∆PSNR-Avg 14.665 13.325 13.409 13.938 7.489 1.945
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the depth image respectively. For S&P, the noise density
d = 0.05. For speckle, we set µ = 0 and σ2 = 0.04. All
of these parameters values are put in imnoise function in
MATLAB. The parameters setting for our method is shown
in Table 1. Moreover, our method is compared with five al-
gorithms, which include MRF [13], Adaptive Manifold Filter
(AMF) [22], JBF [11], NAFDU [12], and Color Guided Filter
(CGF) [5]. We evaluate the performance of these methods in
terms of Root Mean Square Error (RMSE), Structure Similar-
ity (SSIM) [23], Percent of Error (PE) [24] and Peak Signal to
Noise Ratio (PSNR). Table 2 shows the comparison between
our method and the other methods in the case of every noise
in terms of ∆PSNR. For fair comparison, our method perfor-
mance is also compared with the other methods in terms of
all evaluation metrics as shown in Table 3 where all values
represent the gains of every method. Note that every gain
value is actually the average value of the summation of all of
the gains for the four types of noises. For example in case
of PSNR, the final ∆PSNR for every method is calculated as
follows:

∆PSNR =
Again +Bgain + Cgain +Dgain

4
(7)

where Again = PSNRAf(Gauss)
− PSNRBf(Gauss)

,
Bgain = PSNRAf(GaussLV )

− PSNRBf(GaussLV )
,

Cgain = PSNRAf(S&P )
− PSNRBf(S&P )

, and
Dgain = PSNRAf(Speckle)

− PSNRBf(Speckle)
.

PSNRBf is the PSNR of the noisy depth image Z be-
fore the denoising process and PSNRAf is the PSNR of the
final depth image Y after the denoising process. This cal-
culation is also valid for the other evaluation metrics. The
gains of RMSE and PE are by negative but those of SSIM
and PSNR are by positive. From Table 3, it is clearly seen
that our method outperforms the other algorithms and has the
first rank in terms of two evaluation metrics (∆RMSE and
∆SSIM) except for three datasets. In the final row of Table 3,
we also calculate the average gains of all evaluation metrics
over all test images. Therefore, we observe that our method
outperforms all of the other algorithms in terms of all these
evaluation metrics averages.

In addition, the visual quality of our method is compared
with those of other algorithms as shown in Fig 2 in the case
of the Gaussian noise. Our method outperforms other color
guided methods, especially in mitigating the texture coping
in the heavy noise as well as hole pixels filling and S&P noise
removal. It also keeps the depth image structure and almost
depth discontinuities. Moreover, it has the benefit of the opti-
mization technique where it gets the best performance related
to the prior model. As a counterpart, JBF suffers from the
blurry effect at the depth edges as well as coping some of the
texture to the final depth image. This blurry effect appears
because the intensity differences in some regions of the color
image do not appear significantly. In our method, this prob-
lem effect is highly decreased because IGBF has the guidance

property, which in turn enhances the depth image edges. We
also see that NAFDU is robust for preserving the depth dis-
continuities but a lot of texture still clearly appears. This oc-
curs because NAFDU switches to JBF in some heavy noise
in the smooth regions. As a result, our method is better than
these filter-based methods as well as MRF alone in mitigating
the texture coping as appears from the visual quality. Finally,
Fig 3 compares between the boundary performance of our
method and CGF for every noise type. However, our method
does not totally prevent coping some of texture because the
color cartoon result is limited by the contrast between the in-
tensities in the color image.

1- Noisy 

Image

2- MRF

3- AMF

4- JBF

5-

NAFDU

6- CGF

7- Ours

8-

Ground 

Truth

Fig. 2. Different denoising algorithms for Baby1 corrupted
with Gaussian noise and its image fragments.

Gauss.

GaussLV

S&P

Speckle

Ours                                               CGF

Fig. 3. Our proposed method and CGF in different noise.

4. CONCLUSION

In this paper, a new method via depth driven color flattening
filter and MRF is proposed for depth images denoising. Our
method can filter different types of noise with mitigating the
blurry effect and the texture coping problems. Experimental
results show that our method outperforms other denoising al-
gorithms in terms of all metrics where has 14.7 dB and 14.3
% average gains on PSNR and PE respectively.
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