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ABSTRACT
A novel application system is proposed in this paper to

achieve the generation of 3D character animation driven by
markerless human body motion capture. The whole pipeline
of the system consists of four parts: capturing motion data by
multiple cameras, detecting 2D human body joints and esti-
mating 3D joints, calculating bone transformation matrices,
and generating character animation. Its main objective is to
generate 3D skeleton and animation for 3D characters from
multi-view images captured by ordinary cameras. The com-
putation complexity of 3D skeleton reconstruction based on
3D vision is reduced accordingly to achieve the frame-by-
frame motion capture. The experimental results show that
our system is effective and efficient for capturing human ac-
tion and animating 3D cartoon characters simultaneously.

Index Terms— 3D Vision, Markerless Motion Capture,
Multi-View Cameras, Character Animation, Convolutional
Neural Networks.

1. INTRODUCTION

The study of human body motion capture has made consid-
erable progress over recent decades, which is driven by the
practical requirements in the applications of entertainment,
sports and clinical, etc. Most previous work requires high
quality cameras or a chromatic background to segment the
person in foreground precisely. Some recent methods utilize
depth sensors to improve the efficiency of data acquisition.
However, these methods aim at the body shape or skeleton re-
construction, which are usually expensive and not suitable for
normal applications.

To satisfy the requirements of some applications (e.g. 3D
animation, VR games) for simple and easy-to-use motion cap-
ture techniques, this paper presents a markerless body motion
capture system based on multi-view cameras. This system
can use few cheap cameras to generate the body skeleton and
animate characters effectively by 4 stages.
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The first stage is motion data capture with multiple cam-
eras, including camera calibration and synchronization. Af-
ter capturing multi-view images, CNN pose detector is taken
to detect the 2D skeleton. Next, the second stage is the cal-
culation of the 3D skeleton based on multi-view geometry
constraint. In the third stage, bone transformation is calcu-
lated using 3D skeleton to prepare for the last stage. At last,
the character rigging is achieved based on 3D skeleton got-
ten from last stage and optimized in sequence to animate 3D
character vividly.

2. RELATED WORK

Motion capture is the process of recording the movement of
objects or people. A large variety of systems and approaches
have been proposed for capturing human motion in the past
years. There are two categories as follows.

Marker-based motion capture. Currently, motion capture
based on markers has been a mature technique successfully
used in many fields, i.e. the movie industry and virtual re-
ality. While this method is usually suffering from inconve-
nience that controller need to wear marker suits with sensors,
such as optical markers [1], or mounted cameras [2], making
them unable to capture motions of people wearing everyday
clothing. In addition, marker based motion capture is sensi-
tive to skin movement relative to the underlying bone [3].

Markerless motion capture. Recently, more and more re-
searchers pursue this hot topic. From an algorithmic point
of view, markerless motion capture can be classified into two
main categories: discriminative approaches [4] and generative
approaches [5]. Discriminative approaches take advantage of
data driven machine learning strategies to convert the motion
capture problem into a regression or pose classification prob-
lem [6, 7], and therefore are suitable for human-computer
interaction applications where efficiency is more important
than accuracy. As for generative approaches for motion cap-
ture, the ultimate goal is to acquire the pose and shape of the
body, which is achieved by fitting the model to information
extracted from the images. These methods can generate a set
of model parameters such as body shape, bone lengths and
joint angles. In contrast of discriminative approaches, gener-
ative approaches are usually based on temporal information
and solve a tracking problem. The motion capture process
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Fig. 1. The processing pipeline. (a) multi-view cameras, (b) images captured, (c) 2D joint keypoints detector, (d) output of 2D joint keypoints,
(e) 3D skeletion, (f) reassembled 3D skeleton and bone transformation, (g) animation of a 3D character.

is formulated as a frame-by-frame optimization to deform the
skeletal pose [8], the surface geometry [9, 10] or both [11, 12].

Relation to prior work. Earlier, Baran et al. [13] pre-
sented a method for animating characters automatically,
which adopts the skeleton to the character and attaches it to
the surface, allowing skeletal motion data to animate the char-
acter. Film et al. [14] proposed an open source system called
OpenMoCop for optical motion capture, which is developed
based on digital image analysis techniques. Recently, there
are many methods to obtain the human body joints or shape,
by using human 3D scanning or reconstruction [12, 10, 15],
CNN based method [7, 16], and so on, but there is a lack
of complete system to animate virtual avatars or characters.
In addition, to get fine whole body by 3D reconstruction is
difficult and costs a large amount of computing resources, so
it is very hard to apply in the commercial area. Besides, it is
a challenge to use the CNN based method to acquire the 3D
joints with good performance. So our contribution is that we
propose a entire system that can capture human body motion
by no markers easily and fast, concentrating on the body 3D
skeleton reconstruction and virtual character animation.

Fig. 2. 2D joint keypoints detection. (a) input 2D images from multi-
view cameras, (b) merge these images into one single image, (c) get
out-of-order 2D joint keypoints from the Deep CNN detector, (d)
reorder the 2D joint keypoints in accordance with camera id, (e) get
2D skeleton for each camera image.

3. APPROACH

The pipeline of our system mainly includes 4 stages, as shown
in Figure 1. Stage 1 (a-d): multiple rgb cameras shown in (a)
are adopted to collect 2D images from multi-views shown in
(b). (c) is the 2D human body joints detector to detect the
joint keypoints in 2D images, using deep convolutional neu-
ral network (Deep CNN). (d) produces the multi-view output
images with 2D joints. Stage 2 (d-e): the joint keypoints in

3D space are calculated according to the constraint of multi-
view geometry. Stage 3 (e-f): character rigging is achieved
by reassembling a new 3D skeleton with bone transformation
matrix in (f) according to the skeleton in (e) which only con-
tains the joint keypoints. After above steps, the information
obtained for rigging is used to animate a 3D character in Stage
4 (f-g).

3.1. 2D Joints Detection from Multi-view 2D Images

The basic process is shown in Figure 2. First of all, all the
cameras are calibrated after their positions are fixed, using
fundamental matrix estimation for pairs of images followed
by bundle adjustment. Such calibration procedure only needs
to be done once for certain layout of cameras. Then, the deep
CNN detector in a state-of-the-art open-source 2D pose es-
timation library [4] is used to perform the detection of the
2D human pose keypoints. While, as known, using the Deep
CNN method is time-consuming and costs large amount of
computing resources, a procedure of merging multi-view im-
ages into one image, which is fed into the deep CNN, is de-
signed to speed up the calculation and improve the synchro-
nization of output 2D poses. And the 2D skeleton id can be
obtained with its corresponding camera by reordering.

3.2. 3D joints estimation by multi-view 2D joints

Fig. 3. Estimation of 3D joints by 2D joints. (a) a 3D sample space
initialized with width W , height H and length L, (b) space subdivi-
sion, (c) one subspace as a 3D sample unit, (d) the projection area Ω
of the 3D sample unit on image Π.

An overview of the approach for 3D joints estimation is
presented in Figure 3. The basic idea about estimating the 3D
joints of our approach is based on feature point correspon-
dence and visual hull method. Compared with other dense re-
construction of complex dynamic scenes from multiple wide-
baseline camera views, we just reconstruct sparse 3D points
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based on matched 2D joint keypoints from the pose detection
network. In order to speed up the searching of joint candi-
dates in 3D space, subdivision of the space is performed in
our method, which is illustrated in Figure 3.

3.2.1. 3D sample point projection to 2D image area

After initializing one beginning 3D space with W , H , L, the
space is split into eight-fold 3D sub-regions, as shown in Fig-
ure 3(a and b). Taking a 3D sample point as example shown
in Figure 3(c), 9 points (8 vertices and 1 center point) of
one sample cube, {a, · · ·, g, o}, are projected to the image Π
captured by i-th camera. The new points after projection by
{a, · · ·, g} make up an area Ω shown in Figure 3(d).

3.2.2. 3D joint candidates and iterative space subdivision

At the view of the ith camera, the part area of the 2D image Πi

is defined as Ωi, and a 2D point is p2i . we define a 3D sample
cube with width w, height h and length l as Cube{w,h,l}, and
its center point with p3. project(p3, κ) represents the projec-
tion from p3 to p2, where κ is the camera parameters. So the
projection wide Mi of the 3D sample cube in the ith image is
defined as

Ωi = {p2
∣∣ p2 = project(p3, κ), p3 ∈ Cube}.

Since a cube projection on the 2D plane is convex, its pro-
jection area can be calculated easily by its 8 vertices {a, ..., g}.
We define the formula ψi as follows.

ψi =

{
1 p2i ∈ Ωi

0 otherwise.

In this formula, we consider two cases about the relationship
between the real 3D joint keypoint p3 and their candidates. If
the p2 detected in 2D camera images locates in the projection
area M of p3 candidates, we think the cube maybe contain its
corresponding p3. Here, we define NCube =

∑n
i=0 ψi under

multi-views meeting ψi.
An iterative space subdivision strategy is used to locate

the keypoint of each joint in 3D space. This iterative process
will continue until the stop condition, i.e. NCube < δ or size
of Cube < σ, is satisfied. In the stop condition, δ is a integer
constant, which is usually less than the number of cameras for
better error tolerance, i.e. at least δ camera images must meet
the condition p2i ∈ Mi. σ is the smallest cube size for space
subdivision, which is set to 0.05 in our work. The size of cube
is determined by the 2D image resolution and the projection
wide in the 2D image. Usually, the projection wide is decided
by the error of pose detector. In each iteration, the edge length
of the cube for space subdivision is reduced by half.

According to the procedure described above, all the joints
of the captured person are processed one by one and their 3D

candidates are obtained finally. Due to adoption of subdivi-
sion and sparse 3D keypoints reconstruction, the efficiency of
the processing is ensured.

Fig. 4. T pose template: the body’s T pose template definition in-
cluding joints, bones in (a) and local coordinates in (b).

Fig. 5. Character rigging. (a) a character model, Astroboy, (b) skele-
ton setup (rigging), (c) binding skeleton to the model, (d) rendering
result.

3.3. Transformation calculation and character rigging

Due to the difficulty of giving absolute transformation matrix
for each joint in world coordinate, the transformation matrix
relative to the T pose is calculated instead in our method.

The T pose template is presented in Figure 4, which de-
fines joints and bones of a 3D skeleton and left , right , up ,
and down local coordinates, letting x axes of local coordi-
nates point to the extending direction of limbs. The transfor-
mation matrix T of each joint is defined as

T4×4 =

[
R3×3 t3×1

0 1

]
.

where R is the 3 × 3 rotation matrix and t is the 3 × 1 trans-
lation matrix. Here t is obtained from the rigging information
of the original character model, and the bone rotation matrix
is calculated from the variation between the 3D joints gotten
in Section 3.2 and the T pose template. Finally, the process of
animation goes like this in Figure 5.

4. EXPERIMENTS

In this section, we present some experimental results of our
method and comparison with a commercial optical motion
capture system, ASUS Xtion PRO LIVE (Xtion).

Our system is built with a workstation and five same IP
cameras (HIKVISION DS-IPC-B12-I). The workstation is
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Fig. 6. Comparison of projection joints of 3D voxel and 2d CNN detection joints. 10, 20, 30 are the frame of sequence. It displays different
views from view 0 to view 4. Red points are the 2d detection joints by Deep CNN, and blue points are the 2d projection joints of 3D voxel,
which is calculated by our method. “astroboy” and “girl” are the cartoon characters.

Fig. 7. Failure cases of Xtion with correct results by our system. (a)
wrong bone transformation for right upper arm, (b) tracking failure
(right upper arm), (c) tracking failure (interfered by other parts), (d)
tracking failure (limb overlap), (e) tracking failure (objects in front
of limbs), (f) tracking failure (objects very close to limbs).

equipped with a Intel Core i7-6850K@3.6GHz CPU, 32GB
RAM and a NVIDIA TITAN X GPU.

Figure 6 shows the comparison of reprojected points of
the calculated 3D joint points and the results directly obtained
from 2D CNN detector. From the comparison of each view, it
shows that our 3D joint points estimation method works well.

Secondly, we compare the performance of our system
with the same functionality provided by Xtion, which carries
a structure sensor and uses 3D sensing solution provided by
PrimeSense company (bought by Apple Inc. in 2013). Prime-

Sense developed NiTE middleware which analyzed the data
from hardware and modules for OpenNI to provide gesture
and skeleton tracking.

Compared with Xtion, our solution could get more accu-
rate and robust results, which is indicated by the examples
illustrated in Figure 7. Because our system adopts the single-
frame processing based method while Xtion utilizes tracking
based method, there exists slight jitter in the results produced
by our system. However, in some cases Xtion fails to present
the skeleton’s joints completely corresponding to the person
captured by the camera, as shown in Figure 7. There are
two main reasons for these failures: tracking error and wrong
transformation matrix. When body limbs move quickly or are
interfered by limbs itself and other objects, the motion track-
ing by Xtion always fails, which produces tracking error. Be-
sides, even if tracking is successful, Xtion may give wrong
transformation matrices for some joints, which leads to weird
action of the animation character, as shown in Figure 7(a).

Due to non-tracking strategy and multi-view configura-
tion, our system can reduce the interference of limbs them-
selves or other objects and capture the body motion whenever
possible. Furthermore, by the precise calculation method of
3D joints, matrix errors rarely occur in our system. Therefore,
for most Xtion’s failure cases, our system produces correct re-
sults, as shown in Figure 7.

5. CONCLUSIONS

In this paper, a new system is proposed for markerless hu-
man motion capture and animation character rigging based
on multi-view cameras. According to the experimental re-
sults, our system can produce accurate and robust 3D human
body joints from multi-view camera images, which are used
for animation character rigging. This system may be used in
the field of animation production, video game production, VR
game interaction, etc., which can reduce the production costs
and simplify the human-machine interaction notably.
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naldo De Albuquerque Araújo, and João Victor Boechat
Gomide, OpenMoCap: An Open Source Software for
Optical Motion Capture, IEEE Computer Society, 2009.

[15] L. Xu, Y. Liu, W. Cheng, K. Guo, G. Zhou, Q. Dai,
and L. Fang, “Flycap: Markerless motion capture using
multiple autonomous flying cameras,” IEEE Transac-
tions on Visualization & Computer Graphics, vol. PP,
no. 99, pp. 1–1, 2016.

[16] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G.
Derpanis, and Kostas Daniilidis, “Harvesting multi-
ple views for marker-less 3d human pose annotations,”
in IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 1253–1262.

8562


		2019-03-18T11:19:08-0500
	Preflight Ticket Signature




