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ABSTRACT

Expressing multidimensional information as a value in hypercom-
plex number systems (e.g., quaternion, octonion, etc.) has great
potential, in data sciences, e.g., signal processing, to enjoy their
nontrivial algebraic benefits which are not available in standard real
or complex vector systems. Strategic utilizations of such benefits
would include, e.g., hypercomplex singular value decomposition
(SVD) and low rank approximation of matrices. In real world
applications, e.g., representing color images, of hypercomplex num-
ber systems, all attributes are often restricted to be non-negative.
In this paper, we formulate non-negative matrix completion prob-
lem in hypercomplex domain as a convex optimization problem
in real domain. These formulation is based on algebraic trans-
lations of Cayley-Dickson (C-D) linear systems. We then derive
an algorithmic solution to hypercomplex low rank matrix com-
pletion with non-negative constraint based on a proximal splitting
technique. Numerical experiments are performed in a scenario of
high-dimensional hypercomplex matrix completion problem and
show that the proposed algorithm recovers much more faithfully the
original information, masked randomly by noise, than a part-wise
state-of-art algorithms.

Index Terms— Cayley-Dickson number system, hypercomplex
matrix completion, non-negative constraint, convex optimization,
proximal splitting

1. INTRODUCTION

Multidimensional information arises naturally in many areas of en-
gineering and science since almost all observations have many at-
tributes. Utilizing hypercomplex number system for representing
such multidimensional information is one of the most effective ways
because we can express multidimensional information not in terms
of vectors but in terms of numbers among which we can define the
four basic arithmetic operators. Indeed, it has been used in many
areas such as computer graphics [1] and robotics [2, 3] wind fore-
casting [4, 5, 6] and noise reduction in acoustic systems [7]. In
the statistical signal processing field, effective utilization of the m-
dimensional Cayley-Dickson number system (C-D number system)
[8, 9], which is a standard class of hypercomplex number systems
[10], including, e.g., real R, complex C, quaternion H, octonion O
and sedenion S etc., have been investigated.

A hypercomplex number has one real part and many imaginary
parts, and it can represent multidimensional data as a number for
which the four arithmetic operations including multiplication and
division are available. It can fulfill the four arithmetic operations
for multidimensional information, which are not available for ordi-
nary real multidimensional vectors. Moreover, thanks to the non-
trivial algebraic structure, the multiplication of hypercomplex num-
bers can enjoy algebraically interactions among real and imaginary
parts. Hypercomplex vectors, matrices and tensors can also enjoy
these benefits. For example, in 3D object modeling, each point in

3-dimensional space can have multiple attribute such as color, ma-
terial, intensity, etc., and each attribute may have correlation with
other attributes. Modeling of the correlations among attributes in
multidimensional data and will be more and more important by the
popularization of 3D printer [11], virtual reality, medical imaging
etc. Algebraically natural operations in hypercomplex number sys-
tem has great potential for such modelings of various correlations
(see e.g., [12, 13, 14, 15, 16, 17] for color image processing applica-
tions). However, because of the “singularity” of higher dimensional
C-D number systems, few mathematical tools have been maintained
[18, 19, 20, 21]. To overcome this situation, in our previous works
[22, 23], we have proposed several useful mathematical tools for de-
signing advanced algorithm for optimization, learning and low rank
approximation in hypercomplex domain. In [22] we proposed an al-
gebraic real translation for clarifying the relation between C-D linear
system and real vector valued linear systems, and successfully de-
signed some online learning algorithms which are available in gen-
eral C-D domain. Moreover, in [23, 24], we also proposed useful
tools C-D singular value decomposition, rank, low rank approxima-
tion technique and a sparsity measure.

In real world applications, the range of each attribute is often
restricted. For example, the observations of color images are inten-
sities of RGB color spaces and thus they are always non-negative.
In an audio context, it is typical to consider only the non-negative
magnitudes without taking care about phases [25]. Moreover, in
both cases, the low rank assumption is typically justified by the fact
that natural images have certain patterns and audio signals are su-
perpositions of relatively few component signals. In hypercomplex
domains, matrix completion itself has been proposed at most in the
quaternion domain [26] without regarding non-negativeness explic-
itly despite its application is mainly for RGB color images. Under
these situations, therefore, recovering hypercomplex low-rank ma-
trix with non-negative constraint is needed and expected to play an
important role in many applications.

In this paper, to establish a matrix completion framework with
input restriction, first, we formulate hypercomplex matrix comple-
tion problem with non-negative constraint. To achieve it, we in-
troduce a part-wise non-negativeness of hypercomplex numbers.
Thanks to the simple definition of general hypercomplex non-
negativeness, the hypercomplex non-negative matrix completion
problem can be recasted to equivalent to a structured convex opti-
mization problem in real domain by utilizing algebraic translations
proposed in [22]. We then propose an algorithmic solution to hyper-
complex non-negative low rank completion completion algorithm
based on a proximal splitting method, Douglas-Rachford splitting
(DRS) [27]. The proposed algorithm is a C-D generalization of the
dual of non-negative matrix completion algorithm proposed in [25]
and can be applied to general C-D domains.

Numerical experiments including a scenario of high-dimensional
hypercomplex non-negative matrix completion problem show that
the proposed algorithm successfully utilizes algebraically natural
correlations of each attribute to recover much more faithfully the
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original information, masked randomly by noise, than a part-wise
state-of-art non-negative matrix completion algorithm.

2. PRELIMINARIES

2.1. Hypercomplex Number System

Let N and R be respectively the set of all non-negative integers and
the set of all real numbers. Define an m-dimensional hypercomplex
number Am (m ∈ N \ {0}) expanded on the real vector space [8]

a := a1i1 + a2i2 + · · ·+ amim ∈ Am, a1, . . . , am ∈ R (1)

based on imaginary units i1, . . . , im, where i1 = 1 represents the
vector identity element. Any hypercomplex number is expressed
uniquely in the form of (1). The coefficient of each imaginary unit
aℓ (ℓ = 1, . . .m) is called ℓth imaginary part and represented as
aℓ = ℑℓ(a). A multiplication table defines the products of any
imaginary unit with each other or with itself (e.g., i21 = 1, i22 = −1
and i1i2 = i2i1 = i2 for A2(=: C)). We also define the conjugate
of hypercomplex number a as

a∗ := a1i1 − a2i2 − · · · − amim. (2)

In this paper, we consider the hypercomplex number systems which
are constructed recursively by the Cayley-Dickson construction (C-
D construction or C-D (doubling) procedure) [8]. The C-D con-
struction is a standard method for extending a number system. This
method has been used in extending R to C, C to H and H to O. By
using the C-D construction, an m-dimensional hypercomplex num-
ber Am is extended to A2m [8, 9] as

z := x+ yim+1 ∈ A2m, x, y ∈ Am,

where im+1 ̸∈ Am is the additional imaginary unit for doubling
the dimension of Am satisfying i2m+1 = −1, i1im+1 = im+1i1 =
im+1 and ivim+1 = −im+1iv =: im+v for all v = 2, . . . ,m.
For example, the real number system (A1 :=) R is extended into
complex number system C (= A2) by the C-D construction. Note
that the value of m is restricted to the form of 2n (n ∈ N). The
hypercomplex number systems constructed inductively from the real
number by the C-D construction are called Cayley-Dickson number
system (C-D number system). The imaginary units appeared in the
C-D number systems have many characteristic properties [22] such
as i2α = −1 and iαiβ = −iβiα(α ̸= β) for all α, β ∈ {2, . . . ,m}.
These properties ensures aa∗ =

∑m
ℓ=1 a

2
ℓ ≥ 0 for any a ∈ Am in

(1) and a∗ ∈ Am in (2) and enable us to define the absolute values
of C-D number a as |a| :=

√
aa∗.

A representative example of hypercomplex number is the
quaternion H. The quaternion number system is constructed from
the complex number system by using the C-D construction. A
quaternion number is a 4-dimensional hypercomplex which is de-
fined as

q = q1 + q2ı+ q3ȷ+ q4κ ∈ H, q1, q2, q3, q4 ∈ R

with the multiplication table:

ıȷ = −ȷı = κ, ȷκ = −κȷ = ı, κı = −ıκ = ȷ,
ı2 = ȷ2 = κ2 = −1 (3)

by letting m = 4, i1 = 1, i2 = ı, i3 = ȷ and i4 = κ. From
(3), quaternions are not commutative, i.e., pq ̸= qp for p, q ∈ H in
general.

The octonion O can be constructed from the quaternion H by
the C-D construction. Note that the multiplication in O is neither
commutative nor associative, i.e., pq ̸= qp and (pq)r ̸= p(qr) for
p, q, r ∈ O in general [10]. For the octonion multiplication table,
see, e.g., [10].

We also define AN
m := {[x1, . . . , xN ]⊤|xi ∈ Am (i =

1, . . . , N)} for ∀N ∈ N \ {0}, where (·)⊤ stands for the trans-
pose. Define ⟨x,y⟩AN

m
:= xHy ∈ Am, ∀x,y ∈ AN

m and

∥x∥AN
m

:= ⟨x,x⟩1/2AN
m

, ∀x ∈ AN
m, where (·)H denotes the Her-

mitian transpose of vectors or matrices (e.g., xH := [x∗
1, . . . , x

∗
N ]

for x := [x1, . . . , xN ]⊤ ∈ AN
m, where x1. . . . , xN ∈ Am). We

also define the addition of two hypercomplex vectors x + y :=
[x1+y1, · · · , xN+yN ]⊤ ∈ AN

m for x,y(:= [y1, . . . , yN ]⊤) ∈ AN
m.

Let S := R, S := C or S := Am (m ≥ 4), and call the el-
ement of S scalar. If we define the left scalar multiplication as
αx := [αx1, . . . , αxN ]⊤ ∈ AN

m for α ∈ S and x ∈ AN
m, we have

αx + βy ∈ AN
m, ∀α, β ∈ S, ∀x,y ∈ AN

m. We can also define the
right scalar multiplication xα ∈ AN

m in a similar way.

2.2. Algebraic Real Translations of C-D Linear Systems

We briefly review the algebraic translation of C-D valued vectors
and matrices proposed in [22]. A trivial correspondence (mapping)
of hypercomplex vectors or matrices to real ones is

(̂·) : AM×N
m → RmM×N : A 7→ Â :=

[
A⊤

1 , . . . ,A
⊤
m

]⊤
.

This correspondence is just concatenating a real and all imaginary
parts in the hypercomplex vectors or matrices. Obviously, this map-
ping is invertible and thus we can also define |(·) : RmM×N →
AM×N

m : Â 7→ A. Only in terms of the mappings (̂·) and |(·), it is
hard to obtain the correspondence of matrix-vector product Ax, so
we also introduce the following non-trivial mapping:

(̃·) : AM×N
m → RmM×mN :

A 7→ Ã :=
[
L

(1)⊤
M Â,L

(2)⊤
M Â, . . . ,L

(m)⊤
M Â

]
, (4)

where the matrix L
(ℓ)
M ∈ RmM×mM (ℓ = 1, . . . ,m) is defined for

the m-dimensional hypercomplex number Am as

L
(ℓ)
M :=


δ
(ℓ)
1,1IM · · · δ

(ℓ)
1,mIM

−δ(ℓ)2,1IM · · · −δ(ℓ)2,mIM

...
. . .

...
−δ(ℓ)m,1IM · · · −δ(ℓ)m,mIM

, δ(γ)α,β :=

{
1 (if iαiβ = iγ),
−1 (if iαiβ = −iγ),
0 (otherwise),

and IM is the M -dimensional identity matrix. Obvious from (4),
the degree of freedom of Ã is at most that of Â ∈ RmM×N . More
precisely, (̃·) is a mapping onto

SAm(M,N) := {Ã ∈ RmM×mN |A ∈ AM×N
m }

=
{[

L
(1)⊤
M B, . . . ,L

(m)⊤
M B

]∣∣∣B ∈ RmM×N
}
.

(5)

SAm(M,N) represents exactly all C-D matrices in AM×N
m in terms

of real matrices. Similar to the trivial mapping, (̃·) is also invertible
and thus we define (̃·) : SAm(M,N) → AM×N

m : Ã 7→ A. These
translations have many useful algebraic properties. For detail, see
[22].

3. NON-NEGATIVE MATRIX COMPLETION
IN HYPERCOMPLEX DOMAIN

In this section, we first formulate non-negative hypercomplex matrix
completion problem and then propose an algorithmic solution to it.
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3.1. Formulation

First of all we have to define the non-negativeness of hypercomplex
number. For simplicity, in this paper, we consider the following non-
negativeness:

Am+ = {a ∈ Am |ℑℓ(a) ≥ 0, ∀ℓ = 1, . . . ,m} ⊂ Am. (6)

We call an element in Am+ a part-wise non-negative C-D number.
By using this definition, the non-negative low rank hypercom-

plex matrix completion can be formulated as the following optimiza-
tion problem:

minimize
X∈AM×N

m+

rank(X̃) s.t. XΩ = Y Ω, (7)

where XΩ denotes the restriction of the matrix on the entries given
by Ω and Y Ω contains the values of those entries of X . With the
sampling operator LΩ : AM×N

m → Ap
m extracting p observed en-

tries into a vector b ∈ Ap
m and the convex relaxation with the nu-

clear norm and Lagrange multiplier, we obtain the following uncon-
strained formulation:

minimize
X∈AM×N

m+

∥∥∥X̃∥∥∥
∗
+

λ

2
∥LΩ(X)− b∥2Ap

m
, (8)

where ∥·∥∗ is the nuclear norm of real matrices i.e., the sum of pos-
itive singular values. In this paper, we call the problem (8) Cayley-
Dickson non-negative matrix completion (C-D NNMC).

3.2. Algorithm based on Douglas-Rachford Splitting

In this section, we derive a new algorithm based on the Douglas-
Rachford splitting technique [27] to solve the C-D NNMC (8)
efficiently. The DRS is briefly summarized in Appendix. Denote
the 2-fold Cartesian product of the spaces of real matrices byH0 :=
RmM×mN × RmM×mN . Define the inner product ⟨X ,Y⟩H0

:=
1
2
tr(X⊤

1 Y 1) +
1
2
tr(X⊤

2 Y 2), where X = [X1,X2] ∈ H0 and
Y = [Y 1,Y 2] ∈ H0 (X1,X2,Y 1,Y 2 ∈ RmM×mN ) and in-

duced norm ∥X∥H0
:=

√
⟨X ,X⟩H0

, then H0 becomes a real
Hilbert space.

We recast the problem (8) into an unconstrained minimization
of the sum of two functions f and g:

minimize
Z∈H0

f(Z) + g(Z), (9)

where
f(Z) := f1(Z1) + f2(Z2) = ∥Z1∥∗ +

∥∥∥L̂Ω(Z2)− b̂
∥∥∥2

2
,

g(Z) := ιD(Z) =
{
0 (if Z ∈ D),

+∞ (otherwise),

Z := [Z1,Z2] ∈ H0, D := {[Z,Z] ∈ D1 |Zi,j ≥ 0,∀(i, j) ∈ I }
⊂ D1, D1 := {[Z1,Z2] ∈ D2 |Z1 = Z2 } ⊂ D2, D2 =
SAm(M,N)×SAm(M,N) ⊂ H0, I := {1, . . . ,M}×{1, . . . , N}
and L̂Ω satisfies L̂Ω(X̃) = L̂Ω(X) for all X ∈ AM×N

m . Appar-
ently this formulation (9) is equivalent to (8), so we only have to
provide the concrete calculation of the proximity operators of f and
g. The proximity operator of f is given by

proxγf (X ) = [prox2γf1
(X1), prox2γf2

(X2)].

The proximity operator of f1 with index τ := 2γ is given by

proxτf1
(X1) = shrink(X1, τ)

and[
proxτf2

(X2)
]
i,j

=

{[
τ

λτ+1
{λL̂∗

Ω(b̂)}+ 1
τ
X2

]
i,j

(if (i, j) ∈ Ω),

[X2]i,j (otherwise),

where L̂∗
Ω : Rmp → RmM×mN is the adjoint operator of L̂Ω sat-

isfying ⟨L̂Ω(X),v⟩Rmp = ⟨X, L̂∗
Ω(v)⟩RmM×mN for all X ∈

RmM×mN and v ∈ Rmp. Note that the shrinkage operator
shrink(·) is the soft-thresholding w.r.t. singular value vector.

For g, the proximity operator of the indicator function ιM1 is the
orthogonal projection PD onto the subspace D, i.e.,

proxγg(X ) = PD(X ) := argmin
Y∈D

∥X − Y∥H0
.

Since D ⊂ D1 ⊂ D2 ⊂ H0, we have by [28, 5.14, Reduction
principle]

PD(X ) = PD|D1 ◦ PD1(X ) = PD|D1 ◦ PD1 |D2 ◦ PD2(X ).

Note that ‘|Di’ (i = 1, 2) stands for the restriction of the domain to
the subspace Di. The orthogonal projections PD|D1 : D1 → D,
PD1 |D2 : D2 → D1 and PD2 : H0 → D2 respectively can be
calculated as

PD2(X ) = [PS(X1), PS(X2)],

PD1 |D2(X ) =
1

2
[X1 +X2,X1 +X2],

PD|D1(X ) = [maxAm(X̃1, 0),maxAm(X̃1, 0)],

where S := SAm(M,N) and

[maxAm(A, 0)]i,j :=
m∑
ℓ=1

max(ℑℓ(Ai,j), 0)iℓ.

For PS(Xi) (i = 1, 2), let Ep,q,ℓ := Ep,qiℓ ∈ AM×N
m (ℓ =

1, . . . ,m), where Ep,q ∈ RM×N is the matrix only whose (p, q)-th
entry (p = 1, . . . ,M , q = 1, . . . , N ) is 1 and all other entries are 0.
Then, we can easily verify that

⟨Ẽp,q,ℓ, Ẽp′,q′,ℓ′⟩RmM×mN =

{
m (if (p, q, ℓ) = (p′, q′, ℓ′)),

0 (otherwise).

and therefore, { 1√
m
Ẽp,q,ℓ}M,N,m

p=1,q=1,ℓ=1 is an orthonormal basis of
S and thus PS(Xi) can be easily calculated as:

PS(Xi) =
1

m

M∑
p=1

N∑
q=1

m∑
ℓ=1

⟨Xi, Ẽp,q,ℓ⟩RmM×mN Ẽp,q,ℓ.

Now, we can calculate

proxγg(X ) = PD|D1 ◦ PD1 |D2 ◦ PD2(X )
= PD|D1 ◦ PD1 |D2[PS(X1), PS(X2)]

= PD|D1[X
⋆,X⋆]

= [maxAm(X̃⋆, 0),maxAm(X̃⋆, 0)],

where X⋆ := 1
2
{PS(X1) + PS(X2)}. Since all ingredients

are identified, we can summarize the proposed matrix comple-
tion algorithm in Algorithm 1. Here, (tk)k≥0 ⊂ [0, 2] satisfied∑

k≥0 tk(2 − tk) = +∞, γ ∈ (0,+∞). Note that the shrinkage

operator shrink(·) does not keep the special structure of (̃·), i.e.,
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Algorithm 1: Am-Douglas-Rachford splitting for hy-
percomplex non-negative matrix completion (Am-DRS-
NNMC)

Input : M , tk, λ
Output: Recovered matrix X ∈ AM×N

m+

1 k ← 0, X(0)
i ← 0 (∀i = 1, 2);

2 while not converged do
3 X⋆ ← 1

2
{PS(X

(k)
1 ) + PS(X

(k)
2 )};

4 X⋆
+ ← maxAm(X̃⋆, 0);

5 prox2γf1
(2X̃

⋆

+−X
(k)
1 )← shrink(2X̃

⋆

+−X
(k)
1 , 2γ);

6
[
prox2γf0

(2X̃
⋆

+ −X
(k)
2 )

]
i,j

←


[

2γ
2λγ+1

{λL̂∗
Ω(b̂) +

1
2γ

(2X̃
⋆

+ −X
(k)
2 )}

]
i,j

(if (i, j) ∈ Ω)

[2X̃
⋆

+ −X
(k)
2 ]i,j (otherwise)

;

7 for i = 1, 2 do
8 X

(k+1)
i

←X
(k)
i + tk

[
prox2γfi

(2X̃
⋆

+ −X
(k)
i )− X̃

⋆

+

]
;

9 k ← k + 1

10 X⋆ ← 1
2
{PS(X

(k)
1 ) + PS(X

(k)
2 )};

11 X ← maxAm(X̃⋆, 0);

shrink(Ã, 2γ) ̸∈ S in general, so we need the projection onto the
structure PS. However, in complex and quaternion domain, it keeps
the structure [24]. Especially if m = 1 (i.e., Am = R), Algorithm
1 is identical to the dual of the non-negative matrix completion in
real domain proposed in [25]. Lastly, we state the convergence of
the proposed algorithm.

Theorem 1 (Convergence of Am-DRS-NNMC). Let parameters of
Algorithm 1 be chosen so that γ ∈ (0,+∞), (tk)k≥0 ⊂ [0, 2] sat-
isfying

∑
k≥0 tk(2 − tk) = +∞. Then, the output of Algorithm 1

converges to a minimizer of (8).

Remark 1. In this paper, we employ the DRS for solving (8)
but it can be also solved by other advanced convex optimization
techniques such as the alternating direction method of multipliers
(ADMM) [29] and the primal-dual splitting (PDS) [30, 31].

4. NUMERICAL EXAMPLES

In this section, we perform some numerical experiments for examin-
ing the effectiveness of the proposed method. Following the settings
in [32, 33], we randomly generate part-wise non-negative C-D matri-
ces as follows: X := XLX

H
R ∈ AM×N

m , where XL ∈ AM×r
m and

XR ∈ AN×r
m (r < min(M,N)) with all real and imaginary parts

of each entry of XL,XR being i.i.d. from U(0, 1). Only with this
procedure, X is not always part-wise non-negative, so we add an
absolute value of minimum negative value for each imaginary part.
Note that r is not always agree to mrank(X̃) (for detail, see [23]).
In these experiments, we fix r = 2 and rank(X̃) becomes 66 (of
full rank 8×32 = 256). For investigating the limitation of recovery,
we try various percentage ρ of the entries to be known and randomly
chose the support of the known entries. The value and the locations
of the known entries of X0 are used as inputs for the algorithms.
For the parameters, we set λ = 2 and tk = 1. We perform exper-
iments in the case where Am = O (m = 8). Since hypercomplex
non-negative matrix completion is itself completely a new, so we
compare the proposed method Am-DRS-NNMC and three quater-

nion part-wise methods, H2-DRS-NNMC, C4-DRS-NNMC and R4-
DRS-NNMC. These part-wise methods split O into H2, C4 etc. and
estimate separately. Table 1 shows the performance comparisons

Table 1. Performance comparison
X ∈ O32×32, ρ = 0.4, rank(X̃) = 66

Algorithm error # iter.
Am-DRS-NNMC 3.0e-2 1,628
H2-DRS-NNMC 5.0e-1 1,530
C4-DRS-NNMC 1.1e+1 1,272
R8-DRS-NNMC 7.8e-1 1,155

X ∈ O32×32, ρ = 0.1, rank(X̃) = 66

Algorithm error # iter.
Am-DRS-NNMC 1.3 44,867
H2-DRS-NNMC 1.0e+1 43,327
C4-DRS-NNMC 2.6e+1 64,137
R8-DRS-NNMC 1.1e+1 42,340

of all four algorithms. It shows that the proposed method Am-DRS-
NNMC outperforms part-wise methods by exploiting all correlations
among real and imaginary parts for both case. In the case where
ρ = 0.4, R4-DRS-NNMC outperforms C4-DRS-NNMC. It indi-
cates that the performance can be worse if we consider wrong corre-
lations. If ρ is less than 0.1, even Am-DRS-NNMC cannot recover
the original matrix accurately so the recovery limitation is around
here but it still better than the part-wise method.

5. CONCLUSIONS

In this paper, we have proposed an algorithmic solution to hyper-
complex non-negative low rank matrix completion based on a prox-
imal splitting technique. This solution utilizes both part-wise non-
negativeness and special algebraic structure of Cayley-Dickson ma-
trices. Numerical experiments show that the proposed algorithm
fully utilizes the correlation among all imaginary parts and recov-
ers much more faithfully than part-wise algorithms.

APPENDIX

Douglas-Rachford Splitting

The Douglas-Rachford splitting (DRS) [34, 27, 35] is a well-defined
proximal splitting method that solves the minimization of the sum of
two functions

f(x) + g(x), (10)

where f and g are assumed to be elements of the class, denoted
by Γ0(H), of proper lower semicontinuous convex functions from a
real Hilbert space H to R ∪ {+∞}. For given γ ∈ (0,+∞), the
DRS approximates a minimizer of (10) with

(
proxγg(xk)

)
k≥0

by
generating the following sequence (xk)k≥0:

xk+1 ← xk + tk{proxγf [2 proxγg(xk)− xk]− proxγg(xk)},
(11)

where (tk)k≥0 ⊂ [0, 2] satisfies
∑

k≥0 tk(2 − tk) = +∞ and the
proximity operator [36] of index γ of f ∈ Γ0(H) is defined as

proxγf : H → H : x 7→ argmin
y∈H

{
f(y) +

1

2γ
∥x− y∥2H

}
with the norm on H denoted by ∥·∥H. Indeed, if dim(H) < ∞,(
proxγg(xk)

)
k≥0

converges to a minimizer of (10) (see e.g., [37]).

8541



REFERENCES

[1] S. B. Choe and J. J. Faraway, “Modeling head and hand orien-
tation during motion using quaternions,” Journal of Aerospace,
vol. 113, no. 1, pp. 186–192, 2004.

[2] J. C. K. Chou, “Quaternion kinematic and dynamic differential
equations,” IEEE Trans. Robot. Autom., vol. 8, no. 1, pp. 53–
64, Feb. 1992.

[3] J. S. Yuan, “Closed-loop manipulator control using quaternion
feedback,” IEEE Trans. Robot. Autom., vol. 4, no. 4, pp. 434–
440, Aug. 1988.

[4] D. P. Mandic and S. L. Goh, Complex Valued Nonlinear Adap-
tive Filters: Noncircularity, Widely Linear and Neural Models.
John Wiley and Sons Ltd, 2009.

[5] S. L. Goh, M. Chen, D. H. Popovi, K. Aihara, D. Obradovic,
and D. P. Mandic, “Complex-valued forecasting of wind pro-
file,” Renewable Energy, vol. 31, pp. 1733–1750, 2006.

[6] C. C. Took, D. P. Mandic, and K. Aihara, “Quaternion-valued
short term forecasting of wind profile,” in Proc. IJCNN, 2010.

[7] J. Benesty, J. Chen, and Y. Huang, “A widely linear distor-
tionless filter for single-channel noise reduction,” IEEE Signal
Process. Lett., vol. 17, no. 5, pp. 469–472, May 2010.

[8] I. Kantor and A. Solodovnikov, Hypercomplex numbers, An
Elementary Introduction to Algebras. Springer-Verlag, New
York, 1989.

[9] D. Alfsmann, “On families of 2N -dimenisonal hypercomplex
algebras suitable for digital signal processing,” in Proc. EU-
SIPCO, Florence, Italy, 2006.

[10] J. C. Baez, “The octonions,” Bulletin of the American Mathe-
matical Society, vol. 39, no. 2, pp. 145–205, 2001.

[11] W. E. Frazier, “Metal additive manufacturing: A review,” Jour-
nal of Materials Engineering and Performance, vol. 23, no. 6,
pp. 1917–1928, Jun. 2014.

[12] T. Adalı, P. J. Schreier, and L. L. Scharf, “Complex-valued
signal processing: The proper way to deal with impropriety,”
IEEE Trans. Signal Process, vol. 59, no. 11, pp. 5101–5125,
2011.

[13] S. J. Sangwine and T. A. Ell, “Hypercomplex auto- and cross-
correlation of color images,” in Proc. IEEE ICIP, 1999, pp.
319–322.

[14] N. L. Bihan and S. J. Sangwine, “Quaternion principal compo-
nent analysis of color images,” in Proc. IEEE ICIP, 2003, pp.
809–812.

[15] S. Miron, N. L. Bihan, and J. I. Mars, “Quaternion-MUSIC for
vector-sensor array processing,” IEEE Trans. Signal Process.,
vol. 54, no. 4, pp. 1218–1229, Apr. 2006.

[16] T. A. Ell and S. J. Sangwine, “Hypercomplex Fourier trans-
forms of color images,” IEEE Trans. Image Process., vol. 16,
no. 1, pp. 22–35, Jan. 2007.

[17] A. M. Grigoryan and S. S. Agaian, Quaternion and Octonion
Color Image Processing with MATLAB. SPIE Press Mono-
graphs, 2018.

[18] L. A. Wolf, “Similarity of matrices in which the elements are
real quaternions,” Bulletin of the American Mathematical So-
ciety, vol. 42, no. 10, pp. 737–743, 1936.

[19] N. A. Wiegmann, “Some theorems on matrices with real
quaternion elements,” Canadian Journal of Mathematics,
vol. 7, pp. 191–201, 1955.

[20] F. Zhang, “Quaternions and matrices of quaternions,” Linear
Algebra and Its Applications, vol. 251, pp. 21–57, 1997.

[21] T. Dray and C. A. Manogue, “The octonionic eigenvalue prob-
lem,” Advances in Applied Clifford Algebras, vol. 8, no. 2, pp.
341–364, 1998.

[22] T. Mizoguchi and I. Yamada, “An algebraic translation of
Cayley-Dickson linear systems and its applications to online
learning,” IEEE Trans. Signal Process., vol. 62, no. 6, pp.
1438–1453, Mar. 2014.

[23] ——, “Hypercomplex tensor completion with Cayley-Dickson
singular value decomposition,” in Proc. IEEE ICASSP, Cal-
gary, Alberta, Canada, 2018.

[24] ——, “Hypercomplex principal component pursuit via con-
vex optimization,” in Proc. APSIPA ASC, Honolulu, HI, USA,
2018.

[25] D. L. Sun and R. Mazumder, “Non-negative matrix completion
for bandwidth extension: A convex optimization approach,” in
Proc. IEEE MLSP, Southampton, UK, 2018.

[26] X. Han, J. Wu, L. Yan, L. Senhadji, and H. Shu, “Color image
recovery via quaternion matrix completion,” in Proc. 6th In-
ternational Congress on Image and Signal Processing (CISP),
Hangzhou, China, 2013.

[27] P. L. Combettes and J. C. Pesquet, “A Douglas-Rachford split-
ting approach to nonsmooth convex variational signal recov-
ery,” IEEE J. Sel. Topics Signal Process., vol. 1, no. 4, pp.
564–574, Dec. 2007.

[28] F. R. Deutsch, Best Approximation in Inner Product Spaces.
Springer-Verlag, New York, 2001.

[29] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in
Machine Learning, vol. 3, no. 2, pp. 1–122, 2011.

[30] L. Condat, “A primal-dual splitting method for convex opti-
mization involving Lipschitzian, proximable and linear com-
posite terms,” Journal of Optimization Theory and Applica-
tions, vol. 158, no. 2, pp. 460–479, 2013.
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