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ABSTRACT

Complex-valued neural networks (CVNNs) have been shown
to be powerful nonlinear approximators when the input data
can be properly modeled in the complex domain. One of
the major challenges in scaling up CVNNs in practice is the
design of complex activation functions. Recently, we pro-
posed a novel framework for learning these activation func-
tions neuron-wise in a data-dependent fashion, based on a
cheap one-dimensional kernel expansion and the idea of ker-
nel activation functions (KAFs). In this paper we argue that,
despite its flexibility, this framework is still limited in the
class of functions that can be modeled in the complex do-
main. We leverage the idea of widely linear complex kernels
to extend the formulation, allowing for a richer expressive-
ness without an increase in the number of adaptable parame-
ters. We test the resulting model on a set of complex-valued
image classification benchmarks. Experimental results show
that the resulting CVNNs can achieve higher accuracy while
at the same time converging faster.

Index Terms— Complex-valued neural network, activa-
tion function, kernel method

1. INTRODUCTION

Inference in the complex domain is a fundamental task in both
signal processing [1] and machine learning [2]. Among the
approaches proposed over the years, complex-valued neural
networks (CVNNs) are gaining a large interest [3–6], as they
promise to replicate the recent breakthroughs in (real-valued)
deep learning to complex-valued problems, such as forecast-
ing and control of complex signals. Working in the complex
domain, however, poses a range of unique problems arising
from the properties of complex algebra. Foremost among
them is the design of complex activation functions [5]: even
extending the rectified linear unit (ReLU) has been shown
to be highly non-trivial, with multiple proposals being made
over the last two years [3, 7]. Several works end up using
naive split formulations, wherein the real and imaginary parts
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of the activation are processed independently, with a loss in
terms of expressiveness [8].

In [5] we proposed a different approach, where the activa-
tion functions are learned in the complex domain via a simple
mono-dimensional parameterization. The idea, based on the
concept of kernel activation functions (KAFs) originally de-
veloped in [9] for the real domain, is to model each function as
an independent one-dimensional kernel model, whose mixing
weights are adapted through back-propagation, while the dic-
tionary of the kernel matrix is fixed in advance by sampling
the complex plane. Despite the empirical performance shown
in [5] on multiple benchmarks problems, in this paper we ar-
gue that the expressiveness of each KAF, as defined in [5], is
still limited when working in the complex domain. In partic-
ular, very recently it was shown that the standard formulation
of complex-valued kernel methods (which is also adopted in
the KAF) is insufficient to model a large set of signals, be-
cause more than a single kernel is needed to model the statis-
tics of a complex signal [10, 11]. This leads to the concept of
pseudo-kernels and to widely linear kernel methods.

Contribution of the paper: in this paper we combine the
ideas of [5] and [10] and we propose a widely linear KAF
(WL-KAF) model, a non-parametric activation function de-
fined directly in the complex domain with no constraints on its
expressiveness (as opposed to [5]). We experiment with dif-
ferent choices for the kernel and pseudo-kernel, showing def-
inite improvements on a series of image classification bench-
marks in the complex domain, with higher accuracy and faster
convergence during optimization.

Organization of the paper: in Sections 2 and 3 we re-
call the formulation of CVNNs and complex-valued activa-
tion functions. Section 4 describes the proposed WL-KAF.
Then, we empirically validate its performance in Section 5,
before concluding in Section 6 with some remarks on future
lines of research.

2. COMPLEX-VALUED NEURAL NETWORKS

A CVNN is defined analogously to its real-valued counterpart
as the composition of L layers [12]:

f(x) =
(
fL ◦ fL−1 ◦ . . . ◦ f1

)
(x) , (1)
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where x ∈ CF is the input to the network. Each layer is
composed of an adaptable linear projection followed by an
element-wise nonlinearity g:

f i(h) = g (Wih+ bi) . (2)

where Wi and bi are a matrix and a vector that contain
(complex-valued) adaptable parameters. While we focus on
feedforward networks, we note that by replacing (2) with
more elaborate formulations one can obtain complex equiv-
alents of other types of NNs, e.g., convolutional or recurrent
networks [3, 4, 6]. Given N training pairs {xn,yn}Nn=1 we
train the network by minimizing a regularized loss:

J(w) =

N∑
n=1

l(yn, f(xn)) + C · ‖w‖2 , (3)

where all adaptable parameters are collected in w ∈ CQ,
l(·, ·) is a loss function, and C a real-valued scalar (chosen
by the user) weighting the regularization term. An example
of complex loss is the squared one:

l(y, ŷ) = (y − ŷ)
H
(y − ŷ) , (4)

where (·)H is the Hermitian transpose of the vector. Since
(3) is non-analytic, CR-calculus [1, 13] can be used to define
proper complex derivatives for use in any optimization algo-
rithm.

3. COMPLEX-VALUED ACTIVATION FUNCTIONS

As we stated in the introduction, the design of g(·) in the
complex domain is more challenging when compared to the
real-valued one, mostly due to Liouville’s theorem [2].1 It is
common for example to work in a split fashion [14]:

g(z) = gR(<{z}) + igR(={z}) , (5)

where z is a single (scalar) activation, <{z} ,={z} are the
real and imaginary components of z, and gR a generic real-
valued activation function. Alternative approaches involve
phase-amplitude functions acting on the magnitude of the ac-
tivations, e.g. [15]:

g(z) = tanh {|z|} exp {iφ(z)} , (6)

where φ(z) is the phase of z. As mentioned in Section 1,
other authors have also proposed the use of fully complex
trigonometric functions, or different variants of the ReLU
(commonly used in the real-valued case) [4]. We refer to [5]
for a more general overview on the topic. Generally speak-
ing, none of these approaches clearly outperform the others
in practice, making it an open research field.

1We only consider the choice of g(·) for the hidden layers, while the
choice of the activation function in the outer layer depends on the task (see
also Section 5).

<{z}

={z}

2−2

2i

−2i

Fig. 1. Example of dictionary sampling in the complex plane,
with D = 16 elements sampled in [−2,+2] on both axes.

3.1. Kernel activation functions

In [5] we proposed to alleviate the problem of designing
complex activation functions by learning their shape directly
in the complex domain. To this end, we model each acti-
vation function (separately for every neuron) with a small
number of complex-valued adaptable parameters, represent-
ing the linear coefficients in a kernel-based expansion. To
introduce the model, we start by sampling the complex space
uniformly around 0, with a resolution chosen by the user,
as shown pictorially in Fig. 1. The resulting D elements
d = [d1, . . . , dD]

T will form our dictionary. Given this fixed
dictionary, a kernel activation function (KAF) in the complex
domain is defined as:2

g(z) =

D∑
n=1

αnκ (z, dn) = kTα , (7)

where κ is a valid kernel function over complex inputs, k is a
column vector containing the D kernel values computed be-
tween z and the dictionary d, and the parameters {αn}Dn=1 are
adapted independently for every neuron, together with the lin-
ear weights in (2), via standard back-propagation. Fixing the
dictionary in advance allows for an extremely efficient (vec-
torized) implementation of (7) [5].

The choice of κ can leverage over a large body of litera-
ture on complex reproducing kernel Hilbert spaces [16,17]. In
particular, in [5] we performed experiments with a complex-
valued extension of the classical Gaussian kernel:

κ(z, d) = exp
{
−γ (z − d∗)2

}
, (8)

where γ is a hyper-parameter, and the independent kernel pro-
posed in [17]:

2 [5] also considers a split version of the standard KAF. We focus here on
the fully complex extension.
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κ (z, d) = κR (<{z} ,<{d}) + κR (={z} ,={d})
+ i (κR (<{z} ,={d})− κR (={z} ,<{d})) .

(9)

where κR is a generic real-valued kernel (chosen as the stan-
dard Gaussian in [5]). In the experiments for this paper we
will consider a more recent proposal from [10], a real-valued
Gaussian kernel with complex inputs given by:

κ(z, d) = exp
{
−γ (z − d)∗ (z − d)

}
. (10)

4. PROPOSED WIDELY LINEAR KAF

The key motivation for this paper is that the model in (7) is
limited in the kind of complex-valued function it can approx-
imate, an observation first made in [10]. To see this, note that
one can express the complex function g(z) in terms of a ker-
nel method with two outputs, namely, the real and imaginary
parts gr(z), gi(z). According to the theory of vector-valued
kernel methods [18], the corresponding kernel is now matrix-
valued and the output can be written as:

g(z) =

[
gr(z)
gi(z)

]
=

[
kT
rr kT

ri

kT
ir kT

ii

] [
αr

αi

]
, (11)

where we now have four column vectors {krr,kri,kir,kii}
corresponding to the four outputs of the kernel , and two sets
of linear weights αr and αi. Substituting (7) into (11) shows
that (7) forces the constraints krr = kii and kri = −kir,
limiting the expressiveness of the overall model. A solution
to this is the adoption of widely linear kernel methods [10].

Following this, we propose an extension of the complex-
valued KAF adopting widely linear kernels, that we term
widely linear KAF (WL-KAF):

g(z) = kTα+ k̃Tα∗ , (12)

where k̃ = [κ̃(z, d1), . . . , κ̃(z, dD)], and κ̃ is called the
‘pseudo-kernel’. α∗ is the complex conjugate of α. The
model in (12) does not impose the previously discussed limi-
tations, and it can be shown that:

k = 0.5 [krr + kii + i (kir − kri)] , (13)

k̃ = 0.5 [krr − kii + i (kir + kri)] . (14)

Depending on the choice of the kernel and pseudo-kernel,
the resulting model has a larger amount of expressiveness
compared to the standard one. In the context of KAFs and
CVNNs, the model has two additional properties to its favor.
Firstly, as we will see shortly, since the dictionary is fixed the
kernel and pseudo-kernel can generally share a large amount
of computation, making the modification extremely cheap in
terms of speed. Secondly, the use of widely linear models

does not increase the number of adaptable parameters, since
in our case we are only adapting the mixing coefficients α.
Following [10], in the experiments we consider two different
choices for the kernel and pseudo-kernel.

Case 1: if we assume that the real and imaginary parts of
g(z) are independent, the off-diagonal blocks in (11) cancel
and we are left with:

k = 0.5 [krr + kii] , (15)

k̃ = 0.5 [krr − kii] . (16)

In this case we use (10) with two separate parameters γ for
krr and kii. More specifically, both bandwidths in our ex-
periments are initialized following the rule of thumb taken
from [9], but are subsequently adapted via back-propagation
independently for every neuron.

Case 2: in the case where the real and imaginary parts are
not assumed independent, we can exploit the theory of sep-
arable kernels and mixed effect regularizers introduced for
vector-valued kernels [18]. In our case we obtain, for an
hyper-parameter Q chosen by the user [10]:

κ(z, d) =

Q∑
q=1

κq(z, d) , (17)

κ̃(z, d) = 2i

Q∑
q=1

ωqκ̃q(z, d) , (18)

with all the kernels κq and κ̃q being real-valued in output, and
0 < ωq < 1. As before, one can exploit different Gaussian
kernels as in (10), letting the different bandwidths adapt via
back-propagation.

5. EXPERIMENTAL EVALUATION

We evaluate the two proposed WL-KAFs on a series of
complex-valued image classification benchmarks extended
from [5]. We consider four problems:

• MNIST,3 composed of 60000 28× 28 images belong-
ing to ten digit classes.

• Fashion MNIST (F-MNIST) [19]: a variant of MNIST
where classes are clothing items, with the same dimen-
sionality and size as MNIST.

• Extended MNIST (EMNIST) [20]: we use the ‘Digits’
extension, having 240 thousand images of handwritten
digits.

• Latin OCR [21]: an OCR problem of handwritten
Latin characters extracted from manuscripts of the Vat-
ican secret archives. There are 12000 images and 23
classes.

3http://yann.lecun.com/exdb/mnist/
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Table 1. Test accuracy (mean and standard deviation) for the complex-valued image classification benchmarks (see main
discussion for the preprocessing phase). First two rows are taken from [5]. The best results for each dataset are highlighted in
bold.

Model MNIST F-MNIST E-MNIST Latin OCR

Real-valued NN 92.39± 0.10 71.08± 0.45 92.78± 1.25 39.01± 3.42

KAF 97.18± 0.27 81.94± 0.91 98.11± 2.04 71.79± 2.40

Proposed WL-KAF (Case 1) 97.50± 0.41 77.29± 2.43 98.46± 0.12 74.57± 0.80

Proposed WL-KAF (Case 2) 96.22± 0.74 82.89± 1.09 99.03± 1.01 72.53± 0.36

To convert these to complex-valued problems, we adopt the
procedure from [22] and preprocess each image with a fast
Fourier transform (FFT), then rank the coefficients of the FFT
in terms of significance (by considering their mean absolute
value), keeping only the 100 most significant coefficients as
input to the models.

The results in [5] are taken as a baseline, to which we
add two CVNNs of the same dimensionality as [5] (three hid-
den layers of 100 neurons each) exploiting the proposed WL-
KAF. We use a dictionary by sampling 8 points on each axis
equispaced in [−2,+2]. For the case 2 in (18), as in [10], we
use Q = 1, ω1 = 0.3, and the Gaussian kernel in (10) for the
two kernels. As stated before, in all cases the kernel band-
width γ in (10) is initialized with the rule of thumb in [9] and
then adapted independently for every kernel via backpropaga-
tion. The KAFs are applied only to intermediate layers, while
the output h of the last linear projection is fed to a softmax-
like function to compute the class probabilities:

softmaxn(h) =
exp

{
<{hn}2 + ={hn}2

}
∑C

t=1 exp
{
<{ht}2 + ={ht}2

} , (19)

We minimize a regularized cross-entropy over the training
data, where the amount of regularization is found through grid
search as in [5]. We use a version of the Adagrad algorithm on
random mini-batches of 40 images to perform optimization.
We further employ an early stopping procedure, stopping the
optimization whenever the accuracy computed over the vali-
dation split of the dataset is not improving for 1000 iterations
of optimization.

The results of the experiments are provided in Table 1.
“Real-valued NN” is a NN having the same dimensionality as
the others, but treating real and imaginary parts of the input
vector as separate inputs. “KAF” is the KAF in (7) using the
independent kernel in (9). As can be seen, CVNNs with the
proposed WL-KAFs can achieve in all cases a superior perfor-
mance, without introducing additional parameters compared
to the standard complex-valued KAF. This increase in perfor-
mance translates to faster convergence, an example of which
(on the Latin OCR dataset) is shown in Fig. 2.

0 1000 2000 3000 4000
Epoch

2× 100

3× 100

4× 100

6× 100

Lo
ss

KAF
WL-KAF

Fig. 2. Convergence of KAF and WL-KAF (case 1) on the
Latin OCR dataset. Standard deviation is shown with a lighter
color, while the plot is zoomed on the first 4000 iterations.

6. CONCLUSION

In this paper we proposed a new model for learning activation
functions for complex-valued neural networks. The model
extends the idea of kernel activation functions (KAFs), by in-
corporating recent ideas from the field of widely linear kernel
approximation. Compared to the standard KAF, the widely
linear KAF does not require additional trainable parameters
while possessing increased flexibility. On a set of complex-
valued image classification benchmarks, it achieves better ac-
curacy in all problems while at the same time being faster
in terms of optimization. Future work will consider a for-
mal analysis of the generalization properties of the proposed
KAFs, and their evaluation in more elaborate complex bench-
marks. For the latter, we plan a more comprehensive evalu-
ation of kernels over complex spaces, along with the defini-
tion of proper strategies for finding complex hyperparameters
(e.g., complex-valued learning rates in the optimization pro-
cedure [23]).
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