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ABSTRACT

Improperness testing for complex-valued vectors and pro-
cesses has been of interest lately due to the potential ap-
plications of complex-valued time series analysis in several
research areas. This paper provides exact distribution charac-
terization of the GLRT (Generalized Likelihood Ratio Test)
statistics for Gaussian complex-valued signals under the null
hypothesis of properness. This distribution is a special case
of the Wilks’s lambda distribution, as are the distributions
of the GLRT statistics in multivariate analysis of variance
(MANOVA) procedures. In the high dimensional setting,
i.e. when the size of the vectors grows at the same rate as
the number of samples, a closed form expression is obtained
for the asymptotic distribution of the GLRT statistics. This
is, to our knowledge, the first exact characterization for the
GLRT-based improperness testing.

Index Terms— Complex signals, improperness, GLRT,
high-dimensional statistics, Wilks’s Lambda distribution

1. INTRODUCTION

Complex-valued time series and vectors have attracted atten-
tion lately for their ability to model signals from a broad range
of applications including digital communications [1], seis-
mology [2], oceanography [3] or gravitational-waves physics
[4] to name just a few. Among the specific features of com-
plex datasets, the notion of properness (or second order cir-
cularity [5]), in the Gaussian case, is of major importance as
it relates invariance of the probability density function to the
correlation coefficients of complex vectors. The consequence
of properness/circularity on complex random vectors and sig-
nals statistics was studied at large extent in [6, 7]. Testing
for improperness of complex vectors/signals was investigated
by several authors [8, 9] in the signal processing community.
However, it was indeed considered a long time ago by statis-
ticians [10]. In the signal processing literature, authors have
mainly used the augmented complex representation - a twice
bigger vector made of the concatenation of the complex vec-
tor and its conjugate - while an equivalent real-valued repre-
sentation using real and imaginary parts was preferably used
by statisticians. In the sequel, we will make use of this latter

representation to study the Generalized Likelihood Ratio Test
(GLRT). In the scalar case, the notion of proper/improper ran-
dom variable can be phrased as follows: A complex random
variable is called proper if it is uncorrelated with its complex
conjugate. Note that properness is a less general notion than
circularity which qualifies a complex random variable whose
pdf is invariant by rotation in the complex plane. In the Gaus-
sian setting where the variable distribution depends only on
second-order statistics, these two properties become equiva-
lent. In terms of real and imaginary parts of the complex vari-
able, properness means that both real and imaginary have the
same variance and that their cross-covariance vanishes. The
concept of properness extends to complex-valued vectors in a
straight manner (see [6, 7]).

We consider N -dimensional complex-valued centered
random vectors z = u + iv, i.e. u and v are N -dimensional
real vectors with zero mean. In short, we have z ∈ CN ,
u ∈ RN and v ∈ RN . The real vector representation of
z ∈ CN consists in using x =

[
uT ,vT

]T ∈ R2N . The
second order statistics of z ∈ CN are thus contained in the
real-valued covariance matrix C ∈ R2N×2N of x given by:

C =

(
Cuu Cuv

Cvu Cvv

)
(1)

where Cab ∈ RN×N denotes the real-valued (cross)covariance
matrix between real vectors a and b, with Cba = CT

ab.
A complex-valued Gaussian vector is called proper iff the

following two conditions hold:

Cuu = Cvv and CT
uv = −Cuv (2)

If these conditions are not fulfilled, then z is called improper.
Testing for improperness of a complex Gaussian vector

was studied in the seminal work of Andersson [10] where
authors used the 2N -dimensional real-valued representation
of complex N -dimensional vectors. They derived the maxi-
mal invariant statistics for complex vectors and characterized
the joint distribution of those statistics together with using
them for improperness testing. In [8, 1], authors proposed
a GLRT test based on the augmented complex representation,
and highlighted its connection with canonical correlation co-
efficients. Results showing the equivalence of the maximal in-
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variant statistics approach (derived from the 2N -dimensional
real-valued representation) with the canonical correlation co-
efficients derived from the complex structure were obtained
in [9], together with a numerical study of the GLRT Barlett
asymptotic distribution (in the large sample size case with
small or fixed dimension of the complex vector z).

The original contribution of the presented work is twofold.
It consists 1) in the identification of the exact distribution of
GLRT statistics under the null hypothesis of properness,
which reduces to a special case of Wilks’s lambda distribu-
tion, and 2) in the derivation of the asymptotic distribution
for the GLRT statistics in the high dimensional case (vector
and sample sizes growing at the same rate).

2. TESTING FOR IMPROPERNESS

2.1. Testing problem

In several applications, it is common use to model the sig-
nal/vector of interest, denoted z, as being improper and cor-
rupted by proper noise. Consequently, statistical tests have
been proposed to investigate the properness/improperness of
a signal given a sample, from which one will decide:{

H0 : z is proper if condition (2) holds
H1 : z is improper otherwise

(3)

2.2. Invariant parameters

Let G be the set of nonsingular matrices G ∈ R2N×2N s.t.

G =

(
G1 −G2

G2 G1

)
,

where G1,G2 ∈ RN×N . Let S be the set of all 2N × 2N
real symmetric definite positive matrices. According to the
test formulation (3) and condition (2), the null hypothesis H0

is equivalent to C ∈ T = S ∩ G.
As explained in [10], G is a group (isomorphic to the

group GLN (C) of nonsingular N ×N complex matrices un-
der the mapping G ↔ G1 + iG2). Moreover G acts transi-
tively on T under the action (G,T) ∈ G × T 7→ GTGT ∈
T . Thus, a parametric characterization of H0 should be in-
variant to this group action: the value of the parameters to be
tested should be the same for C and GCGT for any G ∈ G.
We introduce the following decomposition C = Ċ + C̈ for
any C ∈ S where

Ċ =
1

2

(
Cuu + Cvv Cuv −Cvu

Cvu −Cuv Cuu + Cvv

)
∈ G,

C̈ =
1

2

(
Cuu −Cvv Cuv + Cvu

Cuv + Cvu Cvv −Cuu

)
.

Lemma 2.1. Any matrix C ∈ S can be written as:

C = G

(
IN + Dλ 0

0 IN −Dλ

)
GT ,

where G ∈ G, IN is the N × N identity matrix and Dλ =
diag(λ1, . . . , λN ) is anN×N diagonal matrix. The diagonal
entries of Dλ denoted as λi for 1 ≤ i ≤ N , are the non-
negative eigenvalues of the following 2N×2N real symmetric
matrix

Γ(C) = Ċ−
1
2 C̈Ċ−

1
2 .

They satisfy the following properties: 1) λi and −λi, for 1 ≤
i ≤ N , form the set of eigenvalues of the 2N × 2N matrix
Γ(C), and 2) λi ∈ [0, 1] with, by convention, the following
ordering 1 ≥ λ1 ≥ . . . ≥ λN ≥ 0.

Proof. See [10, lemma 5.1 and 5.2].

Lemma 2.1 shows that any invariant parameterization of
the covariance matrix C for the group action of G depends
only on the N (positive) eigenvalues 1 ≥ λ1 ≥ . . . ≥ λN ≥
0. Thus these eigenvalues are termed as maximal invariant
parameters [11, Chapter 6]. Moreover under the null hypoth-
esis H0, it comes that λ1 = . . . = λN = 0 as C̈ reduces to
the zero matrix according to (2). Within the invariant param-
eterization, the testing problem in (3) becomes{

H0 : λi = 0, for 1 ≤ i ≤ N,
H1 : λi ≥ 0, for 1 ≤ i ≤ N.

(4)

Note that the invariance property ensures that the test does not
depend on the (common) representation basis of the real and
imaginary parts of z, i.e. vectors u and v.

2.3. Invariant statistics

Consider we have a sample of sizeM , denoted X = {xm}Mm=1,
where xm = [uTm,v

T
m]T are 2N -dimensional i.i.d. Gaussian

real vectors with zero mean and covariance matrix C. In the
Gaussian framework, a sufficient statistics is given by the
2N × 2N sample covariance matrix

S =

(
Suu Suv

Svu Svv

)
with Sab ∈ RN×N the real-valued sample (cross)covariance
matrix of real vectors {am}Mm=1 and {bm}Mm=1 such that
Sab = 1

M

∑M
m=1 ambTm. We assume here that M ≥ 2N ,

thus S belongs to the real symmetric definite positive matrix
set S. According to previous section, since H0 is invariant
under the action of group G, an invariant test statistics must
only depend on the N positive eigenvalues li, 1 ≤ i ≤ N ,
of Γ(S) = Ṡ−

1
2 S̈Ṡ−

1
2 . These sample eigenvalues obey

1 ≥ l1 ≥ . . . ≥ lN ≥ 0 according to lemma 2.1, and
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are an estimate of the true eigenvalues λi obtained from the
population covariance C. Note that the λi are zero under
the null hypothesis H0, and non-negative otherwise. As a
consequence, the distribution of the li should be stochasti-
cally greater under H1 than under H0. Any invariant test can
be derived from this property. A key point to derive now a
tractable statistical test procedure is to characterize the null
distribution of these eigenvalues.

Let BN ( 1
2n1,

1
2n2) denote theN×N -dimensional matrix

variate beta distribution with parameters n1 and n2 as defined
for instance in [12, definition 3.3.2, p. 110].

Proposition 2.1.1. Under H0, the vector (r1, . . . , rN ) of
the squared sample eigenvalues rn = l2n is distributed
as the eigenvalues of the matrix variate beta distribution
BN ( 1

2n1,
1
2n2), with parameters n1 = N + 1 and n2 =

M −N . Moreover, the joint pdf of (r1, . . . , rN ) is expressed
as:

p(r1, . . . , rN ) ∝
N∏
n=1

(1− rn)(M−2N−1)/2
N∏
k<n

(rk − rn),

(5)

where 1 ≥ r1 ≥ . . . ≥ rN ≥ 0.

Proof. As shown in [10, pp. 39-41], the sample eigenvalue
vector (l1, . . . , lN ) is characterized by the following proba-
bility density function (pdf):

p(l1, . . . , lN ) ∝
N∏
n=1

(2ln)(1− l2n)(M−2N−1)/2
N∏
k<n

(l2k − l2n).

A simple change of variables yields the pdf of (r1, . . . , rN )
given in (5). Moreover, according to [12, Theorem 3.3.4,
p. 112], (5) is the pdf of the eigenvalues of the matrix vari-
ate beta distribution BN (N+1

2 , M−N2 ), which concludes the
proof.

3. GENERALIZED LIKELIHOOD RATIO TEST

3.1. Expression of the GLRT statistic

A very classical procedure to test for improperness is obtained
from the Generalized Likelihood Ratio Test (GLRT) statistic
defined as:

T ∝
sup

C s.t. H0

p(X ; C)

sup

C s.t. H1

p(X ; C)
,

where p(X ; C) is the multivariate normal pdf of the sample
X composed ofM i.i.d. 2N -dimension real Gaussian vectors
with zero mean and covariance matrix C. Under H1, C ∈ S
is a symmetric definite positive matrix. It is well known that
its maximum likelihood (ML) estimate is the sample covari-
ance S. Under H0, it comes that C = Ċ as C ∈ T . Then

the ML estimate of C under H0 reduces to Ṡ, as shown for
instance in [10]. Actually, the GLRT statistics is expressed
as:

T = |S|/|Ṡ| = |Ṡ 1
2 (I2N + Γ(S)) Ṡ

1
2 |/|Ṡ| = |I2N + Γ(S)| ,

=

N∏
n=1

(1 + ln)(1− ln) =

N∏
n=1

(1− rn), (6)

where the first equality in the first line is due to the Gaus-
sian pdf expression, the second equality comes from the de-
composition S = Ṡ + S̈ and the definition of Γ(S), the first
equality in the second line comes from lemma 2.1, and where
rn = l2n, 1 ≤ n ≤ N , are the squared sample eigenvalues. As
explained in the previous section, it is important to note that
the GRLT is invariant: the resulting statistics given in (6) only
depends on the eigenvalues of Γ(S).

3.2. Distribution under the hypothesis H0 of properness

Let Λ(d,m, n) denote the Wilks’s lambda distribution, with
dimension parameter d and degrees of freedom parameters m
and n, as defined for instance in [13, definition 3.7.1, p. 81].

Theorem 3.1. The GLRT statistics T given in (6) is dis-
tributed under H0 as the following Wilks’s lambda distribu-
tion:

T ∼ Λ(N,M −N,N + 1).

Moreover this statistics can be expressed under H0 as

T =

N∏
n=1

un, (7)

where the un are independent beta-distributed random vari-
ables such that un ∼ B

(
M−N−n+1

2 , N+1
2

)
, for 1 ≤ n ≤ N .

Proof. According to Prop. 2.1.1, the rn in (6) are dis-
tributed as the eigenvalues of the matrix variate beta dis-
tribution BN ( 1

2n1,
1
2n2) with parameters n1 = N + 1 and

n2 = M − N . Using the mirror symmetry property of the
beta distribution, it comes that the (1− rn) are distributed as
the eigenvalues of the random matrix U ∼ BN ( 1

2n2,
1
2n1).

According now to [12, Theorem 3.3.3, p. 110], U can be
decomposed as U = ΘTΘ where Θ is upper triangular
with diagonal entries θnn that are independent and where
un ≡ θ2nn ∼ B

(
n2−n+1

2 , n1

2

)
for 1 ≤ n ≤ N . This con-

cludes the proof.

Equation (7) gives also a more efficient way to sample
from the null distribution of T in O(N) independent draws.
This does not require to generate the 2N×2N sample covari-
ance matrix S, nor to compute the eigenvalues of Γ(S).
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3.3. High-dimensional asymptotic distribution under H0

The characterization given in (7) allows us to derive, under the
null hypothesis H0, an asymptotic distribution for the GLRT
statistic T in the high dimensional (i.e. large N ) case. This
yields a simple tractable closed form approximation of the
considered Wilks’s lambda distribution when both the dimen-
sion N and the sample size M are large.

Theorem 3.2. Let T ′ = − lnT where T is the GLRT statistic
given in (6). Assume that M, N → ∞ so that the ratio
M/N → γ ∈ (2,+∞). Under H0, the following asymptotic
normal distribution is obtained for T ′

1

sM
(T ′ −mM )

d−→N (0, 1)

where

mM = M

[
ln

γ

γ − 1
+
γ − 2

γ
ln
γ − 2

γ − 1

]
+

1

2
ln

γ

γ − 2
,

s2M = 2

[
ln

(γ − 1)2

γ(γ − 2)
+

1

M

1

γ − 2

]
.

Proof. According to theorem 3.1, T ′ =
∑N
n=1 ζn where the

ζn are independent random variables such that ζn = − lnun
with un ∼ B

(
M−N−n+1

2 , N+1
2

)
for 1 ≤ n ≤ N . Based

on the centered moments of a logarithmically transformed
beta-distributed variable as given in [14], it comes that
E[ζn] = ψ(an + b) − ψ(an) where ψ(·) is the digamma
function, and var[ζn] = ψ1(an) − ψ1(an + b) where
ψ1(·) is the trigamma function. Using Taylor series ex-
pansions of the digamma and trigamma functions, straight-
forward computations, omitted here for the sake of brevity,
yield that E[T ′] =

∑N
n=1E[ζn] = mM + O(1/M) and

var(T ′) =
∑N
n=1 var(ζn) = s2M +O(1/M2).

In order to apply Lyapunov central limit theorem [15, p.

362] to T ′ =

N∑
n=1

ζn, it is sufficient to show that

1

var(T ′)2

N∑
n=1

E
[
(ζn − E[ζn])

4
]
→ 0.

The expression of the fourth order centered moment of ζn
gives now that E

[
(ζn − E[ζn])

4
]

= O
(
1/(M − n+ 2)2

)
for 1 ≤ n ≤ N . As var(T ′) = s2M + O(1/M2) = O(1), the
previous Lyapunov sufficient condition holds, and

Z ≡ 1√
var(T ′)

N∑
n=1

(ζn − E[ζn])
d−→N (0, 1).

By noting finally that 1
sM

(T ′ −mM ) = Z + O(1/M), Slut-
sky’s theorem allows us to conclude the proof.

4. SIMULATION RESULTS

Several simulations have been conducted to appreciate the ac-
curacy of the asymptotic null distribution given in Thm. 3.2
with respect to 1) the sample size M and 2) the dimension N ,
or equivalently the ratio γ = M

N . This approximation is also
compared with the classical Bartlett one derived for Wilks’s
lambda distribution [13, p. 94]. This gives, when the dimen-
sion N is fixed while M goes to infinity, the same asymptotic
distribution as obtained in [9]:

−(M −N) lnT
d−→ χ2

N(N+1), (8)

where χ2
N(N+1) denotes the chi-squared distribution with

N(N + 1) degrees of freedom.
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Fig. 1: Comparison of asymptotic approximations for the GLRT
statistics T : Pr(T > qα) under H0 vs the nominal control level α
in [10−3, 5×10−1] where qα is the 1−α quantile either for the log-
normal approximation given in theorem 3.2, shown in solid blue line,
or the Bartlett approximation (8), shown in dashed red line. (a)-(c)
are for γ = M/N = 10 and M = 10, 100, 1000 respectively, (d)-
(f) are likewise for γ =M/N = 5 and (g)-(i) for γ =M/N = 2.5.
The black dashdotted line represents the y = x values.

Fig. 1 depicts, for different values of M and γ, a
probability-probability plot of the theoretical null distribution
of T against each one of these asymptotic approximations. A
deviation from the y = x line indicates a difference between
the theoretical and the asymptotic distributions. This shows
that as expected for high-dimensional setting (e.g., γ ≤ 5)
and/or large sample sizes (e.g., M ≥ 1000), the asymptotic
distribution that we derived becomes very accurate and much
better than Bartlett one.
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