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ABSTRACT

The filtering estimation problem under uncertainty conditions
is addressed for a class of improper quaternion signals, called
widely factorizable, characterized because their augmented
correlation function is a factorizable kernel. From the knowl-
edge of the correlation functions involved, a recursive algo-
rithm is designed for the computation of the widely linear
(WL) filtering estimate and its associated mean squared er-
ror. The main advantage of the proposed solution is that it
can be applied in situations where a state-space model is not
readily at hand. The benefits of the proposed WL filtering al-
gorithm is analyzed through a simulation example where WL
filtering errors are compared with respect to the strictly lin-
ear (SL) counterparts, showing the superior behavior of the
former over the latter.

Index Terms— Quaternion signals, filtering algorithm,
uncertainty conditions, widely factorizable signals, widely
linear processing

1. INTRODUCTION

For a long time, the problem of estimating a signal in the pres-
ence of noise has been a subject undergoing intense study
among signal processing researchers and it still remains of
great interest in recent literature (see, e.g., [1], [2] or [3]). In
general, the signal is assumed to be present in the observa-
tions. Nevertheless, in the real world the signal can be absent
due to sensor failures, lack of uniformity and constancy in the
data, network congestion, among many other reasons (see,
e.g., [4] and [5]). In these situations, the observation equa-
tion is defined containing, besides the additive noise, a mul-
tiplicative noise defined as Bernoulli random variables which
take the value one or zero depending on whether the signal is
present or absent in the observation.

Optimal linear estimation with uncertain observations was
first addressed by Nahi [6]. The author provides a recursive
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algorithm for the computation of the filtering estimate of the
signal of interest by ass uming that the state-space model is
completely known. As a matter of choice, in those cases
where a state-space model is not readily at hand, knowledge
of the correlation functions involved in the observation equa-
tion has been a key in solving estimation problems. In this
framework, an alternative estimation methodology based on
correlation information has been developed to solve different
estimation problems for the class of factorizable signals (see,
e.g., [7], [8], [9] and [10]). Note that these signals are char-
acterized by having a factorizable kernel, involving stationary
as well as nonstationary signals.

In the last decades, advances in technologies have led to
the use of complex and hypercomplex signals that facilitates
the modeling of multidimensional and multivariate signals.
In this framework, the benefits of the so-called widely linear
(WL) processing over the conventional or strictly linear (SL)
processing has been extensively exploited in recent literature
(see, e.g., [11], [12], [13] and [3]). Indeed, based on the corre-
lation information, the above methodology has been extended
to the complex case providing WL estimation algorithms for
a class of signals with the specificity that the correlation of the
augmented vector formed by the signal and its conjugate is a
factorizable kernel ([1], [12]). Illustrative examples of widely
factorizable signals can be found in [12]. Our interest here is
to extend this approach to the quaternion field.

Quaternion signals are commonly used to represent rota-
tions in a three-dimensional space, since they avoid the sin-
gularity problem inherent in Euler angle representations [14],
and they have found applications in many different problems
such as image processing [15], robotics [16], processing of
polarized waves [17] or vector sensor [18, 19], among others.
In this paper, we consider a class of quaternion signals which
are widely factorizable, it means that the correlation function
of the augmented vector formed by the signal and its three
involutions is a factorizable kernel. Then, using information
of the correlation functions involved, a WL recursive filtering
algorithm is devised in the case of uncertainty observations.
Finally, the good behavior of the proposed algorithm is nu-
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merically analyzed by means of a simulation example.

2. PRELIMINARIES

This section is devoted to introducing some basic notations
and concepts that will be necessary throughout this paper.

In general, scalar quantities will be denoted by lightface
lowercase letters, vectors by lowercase letters and matrices by
boldface uppercase. For some specific matrices we will also
use boldfaced upper case italicized letters. Additionally, row
k of any matrix A(·) will be denoted by a[k](·). Moreover,
the following notation will be adopted: Im is the identity ma-
trix of dimension m, 0n×m is the n × m zero matrix, 0m
is the m-dimensional vector whose elements are zero. Fur-
thermore, the quaternion field will be expressed by H, where
superscripts (·)∗, (·)T and (·)H will represent the quaternion
conjugate, transpose and Hermitian, respectively. The nota-
tion A ∈ Rn×m (respectively A ∈ Hn×m) means that A
is a real (respectively quaternion) n × m matrix. Similarly,
a ∈ Rn (respectively a ∈ Hn) means that a is a real (respec-
tively quaternion) n-dimensional vector.

In addition, diag(·) will represent a diagonal matrix with
the elements specified on the main diagonal, E[·] is the ex-
pectation operator and “�” denotes the Hadamard product1.

Definition 1 A quaternion random signal x(k) ∈ H is de-
fined as a stochastic process of the form

x(k) = xr(k) + ηxη(k) + η′xη′(k) + η′′xη′′(k)

where xν(k), ν = r, η, η′, η′′, are zero-mean real random
signals and {1, η, η′, η′′} fulfills the following relations:

η2 = η′2 = η′′2 = ηη′η′′ = −1

ηη′ = η′′ = −η′η
η′η′′ = η = −η′′η′

η′′η = η′ = −ηη′′

Definition 2 The product ? between two quaternion random
signals x(k), y(k) ∈ H is defined as

x(k) ? y(l) =xr(k)yr(l) + ηxη(k)yη(l)

+ η′xη′(k)yη′(l) + η′′xη′′(k)yη′′(l)
(1)

Definition 3 The quaternion signal x(k) ∈ H is said to
be factorizable if and only if there exist two n-dimensional
quaternion vectors α(k),β(k) ∈ Hn such that the correla-
tion function of x(k), rx(k, l), can be expressed in the form

rx(k, l) =

{
αT(k)β∗(l), k ≥ l
βT(k)α∗(l), k ≤ l (2)

1The Hadamard product of two n ×m matrices A = [Ai,j ] and B =
[Bi,j ] is defined as a n×mmatrix whose elements are A�B = [Ai,jBi,j ].

Note that this type of signal is very common and includes both
stationary and nonstationary signals (see, e.g., [8], [12]).

In the quaternion domain, signals can be classified as
proper or improper, depending on the vanishing or non-
vanishing, respectively, of their complementary functions
(i.e. correlation functions between the quaternion signal
and its three involutions) [20]. Moreover, there exist two
main types of properness: Q-properness if the three com-
plementary functions are zero and Cη-properness if all the
complementary functions cancel except that one correspond-
ing to the involution η, and the improper case where none of
the complementary functions vanish. According to the type
of properness, a different kind of linear processing should
be applied. In the more general case of improper signals,
in order to provide a complete description of the second-
order statistical properties of a quaternion random signal
x(k), an augmented quaternion signal vector2 of the form
xq(k) = [x(k), xη(k), xη

′
(k), xη

′′
(k)]T is required. Then,

the optimal linear processing is the WL processing which
means to operate simultaneously on a four-dimensional vec-
tor whose elements are chosen among the signal, its conju-
gate, and the three potential involutions. WL processing has
proved to outperform the conventional or SL processing, that
does not need to operate on the involutions (see, e.g., [13],
[2]).

Notice that the following relation can be established be-
tween the augmented signal vector xq(k) and the real vector
xr(k) = [xr(k), xη(k), xη′(k), xη′′(k)]T:

xq(k) = Axr(k) (3)

where

A =


1 η η′ η′′

1 η −η′ −η′′
1 −η η′ −η′′
1 −η −η′ η′′


with AHA = 4I4.

Moreover, the following property of the product ? defined
in (1) is verified.

Property 1 The augmented vector of s(k, l) = x(k) ? y(l) is

sq(k, l) =
1

4
Adiag(xr(k))AH ȳ(l)

Next, based on the augmented quaternion signal vec-
tor, a new class of signal is introduced by imposing the
condition of factorizable kernel on the correlation function
Rxq(k, l) = E[xq(k)xq

H

(l)] of the augmented quaternion
signal vector xq(k). This type of quaternion signal, called
widely factorizable , is defined as follows.

2Note that, this augmented quaternion signal vector can be defined from
any combination of four elements among the signal, its conjugate, and
the three perpendicular quaternion involutions xν(k) = −νx(k)ν′, ν =
η, η′, η′′ or their conjugates.
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Definition 4 A quaternion signal x(k) ∈ H is said to be
widely factorizable if and only if there exist two 4 × n-
matrices A(k),B(k) ∈ H4×n such that the correlation
function Rxq(k, l) of the augmented vector xq(k) can be
expressed as

Rxq(k, l) =

{
A(k)BH(l), k ≥ l
B(k)AH(l), k ≤ l (4)

Note that all widely factorizable quaternion signals are
also factorizable ((4) implies (2)), but the converse does not
hold (condition (2) does not assure that the correlation func-
tion of the augmented vector satisfies (4)). Strategies for
the factorization of the correlation function of an augmented
quaternion vector can be found in [21].

Finally, the cross-correlation function between any two
quaternion augmented signal vectors xq(k) and yq(k) will be
denoted by Rxqyq(k, l) = E

[
xq(k)yq

H

(l)
]

and rxyq (k, l) =

E
[
x(k)yq

H

(l)
]

will represent the cross-correlation function
between x(k) and the quaternion augmented vector yq(k).

3. PROBLEM STATEMENT

Consider a widely factorizable quaternion signal vector
x(k) ∈ H which is observed through the following linear
equation:

y(k) = γ(k) ? x(k) + v(k) (5)

where the components of γ(k) ∈ H, γν(k), ν = r, η, η′, η′′,
are independent Bernoulli random variables with parameter
pν(k), which indicates the presence (γν(k) = 1) or absence
(γν(k) = 0) of the quaternion signal component xν(k) in the
observation. Moreover, v(k) is a quaternion white noise 3.

With the purpose of a WL processing, we aim to find
the linear least-mean square error estimator x̂WL(k|k) of
the quaternion signal x(k) based on the augmented quater-
nion observations set {yq(1),yq(2), . . . ,yq(k)}. Observe
that, from Property 1, the augmented quaternion observations
obey the following equation:

yq(k) = Γ(k)xq(k) + vq(k) (6)

where Γ(k) = 1
4A diag(γr(k))AH, withA defined in (3) and

γr(k) = [γr(k), γη(k), γη′(k), γη′′(k)]
T.

It is well known that this estimator can be expressed as a
linear function of the set of augmented quaternion observa-
tions as follows:

x̂WL(k|k) =

k∑
j=1

hT(k, j)yq(j), (7)

3The quaternion white noise v(k) is defined as v(k) = vr(k)+ηvη(k)+
η′vη′ (k) + η′′vη′′ (k) where vr(k), vη(k), vη′ (k) and vη′′ (k) are real-
valued white noises.

where the four-dimensional vector h(k, j), is the impulse re-
sponse function satisfying the equation

rxyq (k, j) =

k∑
i=1

hT(k, i)R(i, j)+hT(k, j)Q(i), 1 ≤ j ≤ k

(8)
where R(i, j) = Π(i)Rxq (i, j)Π(j), with Π(i) denoting the
4 × 4-diagonal matrix Π(i) = 1

4Adiag (E[γr(i)])AH , and
E[vq(i)vq

H

(i)] = Q(i).
Note that the problem is completely determined from

the computation of the impulse response function by solv-
ing equation (8). Nevertheless, our objective here is to de-
vise a recursive algorithm for the computation of such an
estimate. In the following Section, the formulas for the re-
cursive computation of the filter (7) and its associated error
p(k|k) = E[|x(k)− x̂WL(k|k)|2] are displayed.

4. FILTERING ALGORITHM

Algorithm 1 The WL filter x̂WL(k|k) defined in (7) can be
recursively computed as follows:

x̂WL(k|k) = a[1](k)ε(k), k ≥ 1

where the n-dimensional vector ε(k) satisfies this recursive
formula

ε(k) = ε(k − 1) + J(k) [yq(k)−Π(k)A(k)ε(k − 1)]
ε(0) = 0n

with the n× 4-matrix J(k) given by the expression

J(k) = [B(k)−A(k)S(k − 1)]
H
Π(k)Ω−1(k)

where the n× n-matrix S(k) satisfies the recursive equation

S(k) = S(k − 1) + J(k)Ω−1(k)JH(k)
S(0) = 0n×n

and the 4× 4-matrix Ω(k) is of the form

Ω(k) = Σ + Q(k)−Π(k)A(k)S(k − 1)AH(k)Π(k)

with Σ = Adiag
(
E
[
γr(k)γr

T

(k)
]
� E

[
xr(k)xr

T

(k)
])

AH.
The associated WL filtering error is obtained as follows

pWL(k|k) = rx(k, k)− a[1](k)S(k)aH[1](k) (9)

5. NUMERICAL EXAMPLE

In this section, the efficiency of the proposed WL filtering
algorithm is numerically analyzed. Specifically, the better be-
havior of the WL filter in the improper case with respect to
the SL counterpart is illustrated.
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With this purpose, the signal of interest is considered to
be an improper quaternion Wiener process [22] whose aug-
mented correlation function can be expressed in the form (4),
where

A(k) =


a b c d
bη aη dη cη

cη
′

dη
′

aη
′

bη

dη
′′

cη
′′

bη
′′

aη
′′

 B(k) = kI4×4

with a = 1.4676, b = −0.2876 + 0.2720j + 1.0640k, c =
−0.0324−0.7096i−0.0240j, and d = −0.1476 + 0.1096i−
0.7520j. Moreover, the signal is assumed to be observed
through the equation (5) where the measurement noise vn is a
Q-proper quaternion white Gaussian noise with variance pa-
rameterE[v(k)v∗(k)] = 0.04, and the Bernoulli random vari-
ables γν(k) have constant probabilities P [γν(k) = 1] = pν ,
ν = r, η, η′, η′′.

In this framework, Algorithm 1 is applied in order to com-
pute the WL filtering errors pWL(k|k), which are compared
with the SL counterparts pSL(k|k) by considering different
probabilities pr, pη , pη′ and pη′′ for the Bernoulli random
variables. In detail, for each combination of these probabili-
ties, the means of the SL and WL filtering errors, defined as

MESL = 1
k

k∑
i=1

pSL(i|i) and MEWL = 1
k

k∑
i=1

pWL(i|i)

have been calculated. By fixing three of the Bernoulli prob-
abilities and varying the other from 0.75 to 1, the difference
of these means of the filtering errors (DME = MESL −
MEWL) are displayed in Fig. 1 for:

(a) pη = 0. 95, pη′ = 0. 8, pη′′ = 0. 75, and pr varying in
the interval [0. 75, 1]

(b) pr = 0. 9, pη′ = 0. 8, pη′′ = 0. 75, and pη varying in
the interval [0. 75, 1]

(c) pr = 0. 9, pη = 0. 95, pη′′ = 0. 75, and pη′ varying in
the interval [0. 75, 1]

(d) pr = 0. 9, pη = 0. 95, pη′ = 0. 8, and pη′′ varying in
the interval [0. 75, 1]

As would be expected, the superiority of WL filter over
the SL one is clearly illustrated in these four figures (DME >
0) and also, we can observe that this superiority is higher as
the probabilities of the Bernoulli random variables are close
to one.

6. CONCLUSIONS

The problem of estimating a widely factorizable quaternion
signal observed under uncertainty conditions has been ana-
lyzed.

Under these circumstances, the WL filtering estimate is
expressed as a linear function of the augmented observations
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(d) pr = 0. 9, pη = 0. 95,
pη′ = 0. 8, pη′′ ∈ [0. 75, 1]

Fig. 1. Difference of means of the SL and WL filtering errors.

set whose impulse response is completely determined as the
solution of the Wiener-Hopf equation. Then, from only the
knowledge of the correlation function of the augmented vec-
tors involved, a filtering algorithm is designed which can
be applied without the necessity of postulating a state-space
model.

The superiority of the proposed algorithm with respect to
the conventional or SL counterpart has been illustrated on a
numerical example.
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[1] R. M. Fernández-Alcalá, J. Navarro-Moreno, J. C. Ruiz-
Molina, and J.A. Espinosa-Pulido, “Linear and Nonlin-
ear Smoothing Algorithms for Widely Factorizable Sig-
nals,” Signal Process., vol. 93, pp. 897–903, 2013.

[2] C. Jahanchahi and D.P. Mandic, “A Class of Quaternion
Kalman Filters,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 3, 2014.
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