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ABSTRACT

This paper revisits the virtual sensing active noise control
(VS-ANC) technique and extends it to a general multichan-
nel ANC (MCANC) implementation. A frequency domain
analysis shows that the multichannel virtual sensing ANC
(VS-MCANC) technique arrives at an optimal control fil-
ter to cancel the noise disturbance at the virtual locations and
overcomes the spatial correlation and causality constraints be-
tween the physical microphone and the virtual microphone.
A real-time control of broadband noise with a 4-channel
VS-MCANC implemented in a test chamber validates its
theoretical analysis and demonstrates its active control effec-
tiveness.

Index Terms— Virtual Sensing, Active Noise Control.

1. INTRODUCTION

Active noise control (ANC), which creates a destructive anti-
noise wave to attenuate noise, is increasingly prevalent (e.g.,
headsets, ventilation ducts, and window apertures) owing to
its compact size, low cost and better low-frequency attenua-
tion performance compared to passive techniques [1]. How-
ever, it is worth noting that the diameter of the 10 dB ’quiet
zone’ around the physical error microphone in conventional
ANC is approximately one-tenth the acoustic wavelength, i.e.,
λ/10. Hence, traditional virtual sensing techniques were de-
veloped to move the quiet zone nearer to the desired locations
in situations where the physical microphone placements are
restricted (e.g., virtually placing the error microphone near
the ear positions in an automobile headrest [2, 3]).

Many of the proposed virtual sensing ANC (VS-ANC)
techniques [4] generate the quiet zone at the desired locations,
using virtual microphones, which are usually farther down-
stream from the noise source than the physical error micro-
phones [5]. There are generally two categories of VS-ANC
techniques. The first category requires no offline training
to obtain the system model and directly predicts the sound
pressure level at the virtual microphone location based on
some acoustical models [6, 7] or by extrapolation methods
[8, 9]. However, the noise reduction performance of these ap-
proaches is highly sensitive to the accuracy of the model es-
timations, and they are only suitable for low-frequency tonal

sound fields [6]. The second category requires a preliminary
training stage to obtain a filter, which contains the system
model from the physical to the virtual error microphone po-
sition or the information of the optimum noise control filter
[10]. Subsequently, the pre-trained filter will assist the ANC
system in obtaining the optimal control filter to mitigate the
noise disturbance at the virtual microphone location [11].

Currently, some practical VS-ANC algorithms, which be-
long to the second category [12, 13], have been developed.
By placing actual microphones at the virtual microphone lo-
cations, the remote microphone technique computes the ob-
servation filter from the power density of the physical and
the virtual error signals [14, 15] or estimates the plant states
by the Kalman filtering method [16]. Subsequently, the ac-
tual microphones at the virtual microphone location during
the training stage is removed, and the observation filter or
the plant states are utilized to predict the virtual error sig-
nal from the physical error signal [12]. However, the re-
mote microphone technique requires a strong spatial corre-
lation [17] and imposes a causality constraint [8] between the
physical and virtual microphone positions. Hence, the posi-
tioning of the virtual and physical error microphones, usually
through trial-and-error, is critical to the performance of the
remote microphone technique. For instance, if the virtual mi-
crophone is closer to the secondary source than the physical
error microphone, both the spatial correlation and causality
constraints will be violated (i.e., the observation filter would
become non-causal). To overcome these constraints, we re-
visit the virtual microphone control (VMC) system proposed
in [18, 19, 20, 21] and extend it to a multichannel virtual sens-
ing ANC (VS-MCANC)system.

2. THE VS-MCANC ALGORITHM

The VS-MCANC system consists of J references, K sec-
ondary sources, and M error microphones to cancel the
disturbance from L primary sources at the N virtual micro-
phones locations, as shown in Fig. 1. The VS-MCANC
technique consists of two stages: the tuning stage, and the
control stage. In the tuning stage, the sum-of-the-squared
primary noise signals at the desired virtual error microphone
locations (using actual microphones) are minimized. Once
the control filter converges to their optimal solution, auxiliary
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Fig. 1. Schematic of the VS-MCANC.
filters are trained to account for the differences between the
physical and virtual paths (i.e., both the primary and sec-
ondary paths). In the control stage, the actual microphones
at the virtual locations are removed. Both the physical error
microphones and the auxiliary filters enable optimal noise
control at the desired virtual microphone locations.

In the tuning stage, the output signal vector y(n) is given
by

y(n) = wT (n)x(n), (1)

where w(n) is the control filter matrix. The stacked refer-
ence vector x(n) is [xT

1 (n),x
T
2 (n), · · · ,xT

J (n)]
T , and xj(n)

denotes the reference signal vector picked up by the jth ref-
erence microphone. Using the FxLMS algorithm, the update
equation of the control filter from the jth input to the kth out-
put is given by

wkj(n+ 1) = wkj(n)− µ1

N∑
i=1

x′v,jki(n)ev,i(n), (2)

where ev,i(n) is the ith virtual error signal, and µ1 denotes the
step size in the tuning stage. The filtered reference x′v,jki(n)
is the convolution of the jth reference signal xj(n) and the
virtual secondary path estimate ĝv,ik(n), which is from the
kth secondary source to the ith virtual microphone.Once the
control filter converges, themth auxiliary filter stacked vector
is obtained by

hm(n+ 1) =hm(n)

+ µ2

[
ep,m(n)− hT

m(n)x(n)
]
x(n),

(3)

where hm(n) = [hT
m1(n),h

T
m2(n), · · · ,hT

mJ(n)]
T and

hmj(n) denotes the auxiliary filter from the jth reference
to the mth physical microphone; µ2 denotes the step size in
the LMS algorithm; and ep,m(n) denotes the mth physical
error signal.

In the control stage, the new control filter is computed as:

wkj(n+ 1) = wkj(n)− µ3

M∑
m=1

x′p,jkm(n)

×
[
ep,m(n)− hT

o,mx(n)
]
,

(4)

Fig. 2. Block diagram of VS-MCANC in the tuning stage
(dotted box: digital processing block; rest: acoustic path).

where x′p,jkm(n) is the convolution of the jth reference signal
xj(n) and the secondary path estimate ĝmk(n), from the kth
secondary source to themth physical microphone; µ3 denotes
the step size in the control stage; and ho,m represents the mth
optimal auxiliary filter obtained from (3).

3. FREQUENCY DOMAIN ANALYSIS

In the multichannel active control of noise disturbances at the
virtual microphone locations, error microphones must first be
placed at these locations. The multichannel FxLMS algorithm
used to minimize the sum-of-the-squared errors at these loca-
tions is shown in Fig. 2. The (L × 1) primary random noise
vector V1 propagates through the (J × L) reference paths R
to generate the (J × 1) reference vector X1. The error signal
vector at the N virtual error microphone positions is given by

Ev1 = Dv1 +GvWX1, (5)

where Dv1 is the (N × 1) vector of disturbances due to V1

propagating through the primary paths Pv . Gv and W are the
(N ×K) secondary path and (K × J) control filter matrices,
respectively. The power spectral density of the virtual error
signal can be expressed as

Jv1 = E
[
EH

v1Ev1

]
= tr

{
E
[
Ev1E

H
v1

]}
, (6)

where E[·] and tr[·] are the expectation and trace operators,
respectively. By substituting (5) into (6) and using the prop-
erties of the trace operator, i.e., tr[A + B] = tr[A] + tr[B]
and tr[AB] = tr[BA], we expand (6) to

Jv1 = tr[Sd,v1 +WHGH
v Sxd,v1 + Sdx,v1GvW

+WHGH
v GvWSx1],

(7)

where the spectral density matrices for the reference and
disturbance signals are Sx1 = E[X1X

H
1 ] and Sd,v1 =

E[D1D
H
1 ], respectively. Their cross-spectral density ma-

trix is defined as Sxd,v1 = E[Dv1X
H
v1]. The optimal control

filter is calculated by minimizing the cost function in (7) by
setting its gradient to zero

∇Jv1 = 2SH
xd,v1Gv + 2SH

x1W
H
o GH

v Gv = 0. (8)
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Fig. 3. Block diagram of VS-MCANC in the control stage.

Hence, the optimal control filter is derived as

Wo = −
[
GH

v Gv

]−1
GH

v Sxd,v1S
−1
x1 , (9)

where Sx1 is assumed to be invertible [14]. Since the distur-
bance and reference signals are respectively created by the
passage of V1 through Pv and R, Sx1 and Sd,v1 can be
rewritten as Sx1 = RSv1R

H and Sxd,v1 = PvSv1R
H ,

where Sv1 = E[V1V
H
1 ]. By inserting [RHR]−1RHR = I

into (9), the MCANC optimal control filter at the virtual error
location can be rewritten as

Wo = −
[
GH

v Gv

]−1
GH

v Pv

[
RHR

]−1
RH . (10)

In the second part of the tuning stage, the control filter
in (10) is used to train the auxiliary filter, as shown in Fig.
2. Hence, the error signal vector used to update the auxiliary
filter is given by

Eh1 = Dp1 +GWoX1 −HX1, (11)

where Dp1 and G are the vectors of disturbances and sec-
ondary path matrix to the physical error microphones, respec-
tively; and H is the auxiliary filter matrix. The power spectral
density of (11) is given by

Jh1 = E
[
EH

h1Eh1

]
= tr

{
E
[
Eh1E

H
h1

]}
. (12)

Substituting (11) into (12) yields

Jh1 = tr{Sd,p1 + Sxd,p1W
H
o GH −HHSxd,p1+

GWoSdx,p1 +GWoSx1W
H
o GH −HHGWoSx1

−HSdx,p1 −HSx1W
H
o GH +HHHSx1},

(13)

where Sxd,p1 = E[Dp1X
H
1 ] = PSv1R

H , and P is the pri-
mary path to the physical error microphones. By setting the
gradient of (13) to zero, we can derive the optimal auxiliary
filter matrix as

Ho =
{
P−G

[
GH

v Gv

]−1
GH

v Pv

} [
RHR

]−1
R. (14)

Fig. 4. The 4-channel VS-MCANC platform.

In the control stage, the actual microphones are removed
from the virtual error locations, and the primary random noise
vector is now V2, as shown in Fig. 3. The error signal vector
Eh2 used to update the control filter is given by

Eh2 = Dp2 +GWX2 −HoX2, (15)

where Dp2 and X2 are the vectors of disturbances at the phys-
ical error microphones and references, respectively. Hence,
the power spectral density of (15) is given by

Jh2 = tr{Sd,p2 +WHGHSxd,p2 − Sxd,p2H
H
o +

GWSdx,p2 +WHGHGWSx2 −GWSx2H
H
o

−HoSdx,p2 −WHGHHoSx2 +HSx2H
H
o },

(16)

where Sxd,p2 = PSv2R
H , Sx2 = RSv2R

H , and Sv2 =
E[V2V

H
2 ]. The optimal control filter matrix is obtained by

setting the gradient of (16) to zero as

Wo,c =
[
GHG

]−1 (
GHHoSx2 −GHSxd,p2

)
S−1x2 , (17)

where Sxd,p2 is assumed invertible. By substituting (14) into
(17), the optimal control filter in control stage is rewritten as

Wo,c = −
[
GH

v Gv

]−1
GH

v Pv

[
RHR

]−1
RH , (18)

which is the same as the conventional MCANC with actual er-
ror microphones at the virtual locations. Hence, optimal con-
trol can be achieved at the desired virtual error microphone lo-
cations through the VS-MCANC algorithm. As shown in(17),
the solution of control filter is composed of the auxiliary fil-
ter. However, in the formula (14) of the auxiliary filter, the
transfer function of the virtual primary path is independent
of the physical primary path. Hence, once getting the trans-
fer functions of the microphones’ paths, we can calculate the
optimal auxiliary filter. Moreover, the final control filter of
VS-MCANC in (18) does not require information about the
secondary paths of physical error microphones. Therefore,
the locations of the physical and virtual error microphones
are independent in the VS-MCANC algorithm.
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Fig. 5. Power spectrum of virtual error signal in three config-
urations.
4. REAL-TIME IMPLEMENTATION OF VS-MCANC

A 4-channel VS-MCANC algorithm was implemented in real
time on a National Instruments PXI platform (NI PXIe 8880)
with all filters at 512 taps and a fixed sample rate of 16 kHz.
Four control sources, with information from four reference,
physical and virtual microphones, were driven to control the
broadband primary noise (500 Hz to 1.4 kHz) propagating
through a square from the inside of a wooden chamber, as
shown in Fig. 4. Three experimental configurations were
investigated, as illustrated in Fig. 4 (a)-(c). In the first ex-
periment shown in Fig. 4(a), the physical microphones were
positioned closer to secondary sources than the virtual micro-
phones. In the second experiment shown in Fig. 4(b), the lo-
cations of the physical and the virtual error microphones were
swapped, such that the arrangements (transfer function from
the physical microphone to the virtual microphone) were non-
causal. Finally, the physical and virtual error microphones
were symmetrically arranged such that there was no spatial
correlation between both sets of microphones. In each exper-
imental configuration, three algorithms were tested: (1) the
conventional MCANC with virtual error microphones as the
error microphones, (2) the VS-MCANC, and (3) the MCANC
without VS by using only the physical error microphones.

The power spectrums of the error signals at the virtual mi-
crophone locations of the three experimental configurations
are shown in Fig. 5. When ANC is activated, there is sig-
nificant noise reduction at the virtual error microphone loca-
tions. Notably, both the VS-MCANC and the conventional
MCANC exhibited similar power spectrum at the virtual er-
ror microphone locations. The attenuation levels at both the
physical and virtual error microphone locations in all three
experimental configurations and algorithms are shown in Fig.

Fig. 6. Noise reduction at locations of error microphones.

6. The results indicate that both the VS-MCANC and the con-
ventional MCANC have similar attenuation levels at the vir-
tual microphone locations and both outperform the MCANC
without VS technique. This experimental validation implies
that the VS-MCANC algorithm can achieve the optimal noise
control at the virtual error microphone locations without the
spatial correlation and causality constraints.

5. CONCLUSION

Frequency domain analysis based on the control of random
primary noise reveals that the proposed VS-MCANC algo-
rithm could achieve the optimal noise reduction at the virtual
error microphone locations. Compared to other multichan-
nel VS-ANC techniques, the VS-MCANC uses the indepen-
dent virtual and physical paths rather than the related infor-
mation between the virtual and physical locations to update
the control filter, which overcomes the spatial correlation and
causality constraints between the physical and virtual micro-
phones. Furthermore, a real-time 4-channel VS-MCANC was
implemented to control broadband noise emitting from a test
chamber, and its experimental results validate the theoretical
analysis of the paper.
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