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ABSTRACT

It is often difficult to position microphones at the ear posi-
tion of listeners to directly monitor the perceived sound, in
local active sound control systems for example. The pressure
at these positions can be estimated using virtual sensing with
an array of remote monitoring microphones, however, if some
assumptions are made about the sound field. In active control,
the sound field due to the secondary sources can be reasonably
easily accounted for but the primary sound field, which is to
be controlled, will in general be due to a number of potentially
correlated primary sources, whose positions are unknown and
may vary in time. The virtual sensing in this application thus
needs to be robust to the properties of the primary sound field,
both in the choice of the remote monitoring microphone po-
sitions and in the design of the filters used to process these
to estimate the pressure at the desired position. If the con-
troller is feedforward, the causality of these filters may also
be relaxed if the adaptive algorithm is designed to minimise
a delayed virtual error signal. This paper describes examples
of such robust design, particularly applied to the local active
control of road noise in vehicles.

Index Terms— Remote microphone method, local active
sound control, Robustness

1. INTRODUCTION

It may be impossible to place a microphone exactly at the
position where the pressure needs to be monitored in vari-
ous applications, and so remote sensing must be used, typi-
cally using an array of monitoring microphones. An example
would be local active sound control at the listener’s ear in a
vehicle [1–8], and a number of methods of remote sensing
have been developed for this application [9]. We are particu-
larly interested in the active control of random road noise in
vehicles [8] , for which time-advanced reference signals are
available so that adaptive feedforward control algorithms can
be used [10]. To achieve good performance in this applica-
tion it is important that the latencies in the direct control path
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are kept to a minimum [11]. The error signals derived from
the remote sensing, however, are only used to adapt the feed-
forward controller, and so although the use of a delayed error
signal may affect the convergence time, it will not change the
steady-state performance of such a controller under stationary
conditions. The use of such a delayed error signal is described
in section 2.

The general arrangement of a remote sensing system in
this application is shown in Figure 1, in which the monitor-
ing microphones, with outputs dm, are assumed to be linearly
processed by an observation filter,O, to best estimate the sig-
nal at the remote virtual microphones. Another important is-
sue in practice is the design of such an observation filter so
that it is robust to the details of the stochastic sound field be-
ing sensed, which is assumed in Figure 1 to be generated by
an array of partially correlated primary noise sources, v. The
robustness analysis for remote sensing in section 3 constitutes
the main contribution of this paper and section 4 provides an
example of its application.

2. ADAPTATION WITH A DELAYED,
REMOTELY-SENSED, ERROR SIGNAL

Figure 2 shows the block diagram of an adaptive feedforward
controller using the filtered reference LMS algorithm and the
“remote microphone technique” (RMT) [9, 12], incorporat-
ing a modelling delay of ∆ samples in the observation fil-
ter [8, 13]. The modelling delay also has to be included in
the estimation of the response from the secondary source to
the virtual error microphone, Ĝe, both in the remote micro-
phone arrangement, coloured yellow in Figure 2, and in the
internal model of this, used to generate the filtered reference
signals for the adaptive LMS algorithm. Figure 3 shows a
comparison of the results of using an adaptive feedforward
algorithm to implement a local active controller on a headrest
in the laboratory, with either the standard RMT or the delayed
RMT, when a single loudspeaker, used as the primary source,
was placed in front of the headrest [7]. In this case the error
microphone is closer to the primary source than the monitor-
ing microphones, so the ideal observation filter is non-causal
and the delayed RMT allows considerably better attenuation
of the disturbance than the stand. This is because the delayed
RMT essentially allows a non-causal observation filter, which
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Fig. 1. Remote sensing arrangement in which the outputs of
an array of monitoring microphones, dm, is processed by an
observation filter, O, to give an estimate, d̂e, of the output
of a remote virtual microphone, de. The stochastic signals at
the microphones are assumed to be generated by an array of
partially correlated primary sources, v, as indicated by stars.

estimates the virtual error signals from the physical moni-
toring microphone signals. In other experiments, when the
loudspeaker was positioned behind the headrest, the ideal ob-
servation filter was causal and then there is little difference
between the performance of the standard and delayed RMT
implementations.

It should be emphasised that although the adaptation of
the controller, W , is a real-time operation, the design of the
observation filter must generally be performed in an identi-
fication phase prior to implementation, since it requires ac-
cess to the signals from the virtual microphones, which are
removed in real-time operation. If FIR filters are used to im-
plement the observation filter, time domain methods may be
used for its design [8,14]. With a reasonable modelling delay,
however, the time domain filters are well approximated by the
Fourier transforms of the filters designed in the frequency do-
main. Frequency domain design can give considerable insight
into the robust design of these observation filters, as consid-
ered below.

3. ROBUST DESIGN IN REMOTE SENSING

Considering the stochastic signals in a single frequency bin,
the estimation error between the actual pressures at the virtual
microphones and their remote estimate using the observation

filter can be written as

ε = de − d̂e = de −Odm, (1)

where the dependence on frequency has been suppressed for
notational convenience. Assuming that dm and de are gener-
ated by the array of primary sources in Figure 1, the estima-
tion error can be written as

ε = Pev −OPmv, (2)

where Pe and Pm are the matrices of responses from the ar-
ray of primary sources to the vectors of virtual and monitoring
microphones, as shown in Figure 2. For a robust design we
assume that these two response matrices are subject to uncer-
tainty, due for example to perturbations in the acoustic field,
so that

Pe =Pe0 + ∆Pe, (3)
Pm =Pm0

+ ∆Pm, (4)

where Pe0 and Pm0
are the nominal responses and ∆Pe and

∆Pm are perturbations away from these.
We treat the elements of ∆Pe and ∆Pm as random per-

turbations [15], which are uncorrelated with the actual re-
sponses and also between themselves so that

< PH
m0

∆Pm >=0 (5)

< PH
e0 ∆Pm >=0 (6)

<∆Pe∆Pm >=0. (7)

where < > denotes averaging over an ensemble of different
perturbations, and a similar set of conditions applied to ∆Pe.
A robust observation filter can now be designed using the
methods discussed in [10, 15], to minimise the expectation
value of the sum of the mean square errors which is

Oopt =< PeSvvP
H
m >

[
< PmSvvP

H
m >

]−1
(8)

where Svv is the power spectral density matrix of the primary
sources. Using the assumed properties of the perturbed re-
sponses described above, this reduces to

Oopt = Pe0SvvP
H
m0

[
Pm0

SvvP
H
m0

+B
]−1

(9)

where
B =<∆PmSvv∆P

H
m >≈ β I (10)

If the perturbations in the elements of Pm and the pri-
mary sources are reasonably well uncorrelated but have simi-
lar mean square values, then the matrixB will approximate a
diagonal matrix and can be written as βI , where β is a scalar
regularisation parameter. Thus the robust design of the ob-
servation filter used for remote sensing has exactly the same
Tikhonov-regularised form as that which penalises the magni-
tude of the elements in the observation filter [6]. Also, if there
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Fig. 2. Block diagram of the filtered-reference LMS algorithm for adaptive feedforward control in which the error signal is
derived using the remote microphone method, in yellow, with a modelling delay, ∆.

Fig. 3. Power spectral density of the signal measured at the er-
ror microphone without control (blue solid line), with control
using the standard RMT (red dashed line) and with control
using the delayed RMT (blue dotted line).

are components of the primary noise field that couple into the
monitoring microphones more efficiently than into the error
microphones, these will act as sensor noise in the design of
the observation filter, further regularising the matrix being in-
verted in its design [16].

Considerable insight into the effect of the regularisation
parameter, β, can be obtained by considering the variation of
the condition number of the matrix being inverted in equation
(9) with this parameter, and the magnitude of the observa-
tion error, as plotted in Figure 4. This has been generated for
the arrangement shown in Figure 1 in the case of a diffuse
sound field, for which there are a large number of uniformly-
distributed and uncorrelated primary sources, in which case
the spatial cross-correlation functions in eq. (9) have an ana-

lytical formulation [6, 17]. The separation between the mon-
itoring microphones in Figure 1 was 0.1 m at a frequency of
about 135 Hz in this simulation, so that the separation be-
tween the microphones is about 4% of the acoustic wave-
length, and the virtual microphone was at a distance of 0.2 m
in front of the array. Clearly there is a range of values of the
regularisation parameter for which the observation error is not
significantly increased, but the condition number of the ma-
trix inverted in eq. (9), which is a measure of the sensitivity of
the filter to uncertainties in the data, is considerably reduced.
Choosing the regularisation factor to be about 104, for exam-
ple, gives a condition number which is about 200, instead of
about 2× 106 if the regularisation factor is very small, and an
estimation error which is within 0.05 dB of the best that can
be achieved, with little regularisation, which is about -11 dB
in this case.

4. EXAMPLES OF ROBUST REMOTE SENSING IN A
VEHICLE

Jung [8] describes a series of experiments in which the pres-
sure waveforms due to the road noise in a large SUV were
measured at 16 remote monitoring microphones and at the
ear positions of a dummy head, as shown in Figure 5, under
different road conditions. Different observation filters were
designed, based on these different road conditions, and the
dashed line in Figure 6 shows the normalised estimation error
at the left ear of the dummy head as a function of frequency,
as calculated from the data when the vehicle was driven over
a smooth road and using an observation filter calculated from
the same data. The estimation error increases with frequency,
but is less than −10 dB below about 400 Hz. Also shown, as
the solid line, in this Figure, is the estimation error calculated
from the data on the smooth road but using an observation
filter calculated from the data when the vehicle was driven
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Fig. 4. Variation with the regularisation parameter, β, of the
condition number of the matrix that is inverted in the calcula-
tion of the optimum observation filter, solid line, and the level
of the normalised estimation error, dashed line.

over a rough road. It can be seen that although the estimation
error is somewhat larger at a few frequencies, it is generally
of a similar level to that obtained with the observation filter
designed for the smooth road conditions. The estimation er-
ror gets progressively larger if less than 16 monitoring micro-
phones are used for remote sensing, even when an exhaustive
search was used to find the best sub-set [8]. It is also possible
to use an additional l1 constraint in the design of the observa-
tion filter to more easily select the best subset of monitoring
microphones using a LASSO-type algorithm, as described for
example by [18].

Fig. 5. The arrangement of monitoring microphones and the
dummy head used to record the pressure waveforms due to
the road noise in a large SUV when driven over different road
surfaces.

Fig. 6. The normalised estimation error at the left ear of the
dummy head as a function of frequency, calculated using the
delayed remote microphone technique (RMT), when the ve-
hicle was driven over a smooth road. The dashed line shows
the results when the observation filter was calculated using
the same data, for the smooth road, and the solid line shows
the error on the smooth road when the observation filter was
calculated using data from a rough road.

5. CONCLUSIONS

It has been shown that although causality can be very impor-
tant in designing the control filters for an adaptive feedfor-
ward controller, there is less of a causality issue for the re-
mote sensing of an error signal that is only used to adapt the
controller. The same conclusion would not hold if a feed-
back control was used instead however, since the error signal
is then effectively also used as a reference signal in such an
arrangement [10, 19, 20]. The relaxed causality constraint al-
lows frequency domain design of the filter used for the remote
sensing. By minimising the mean square estimation error over
an ensemble of different primary fields, it is shown that the ro-
bust design of these filters is equivalent to calculating it using
Tikhonov regularisation. This is illustrated by an example us-
ing data measured in a vehicle under two different road noise
conditions.
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