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ABSTRACT

In this work, we propose a data driven trajectory forecasting

algorithm that utilizes both recorded historical and stream-

ing trajectory observations. The algorithm performs Bayesian

inference on a directed graph the walks on which represent

stochastic change point models of trajectory classes. Parame-

ter distributions of these models are learnt from recorded tra-

jectories. Forecasting is then made by calculating the class –

or, walk– probabilities and corresponding predictive distribu-

tions for a given stream of location and velocity observations.

This approach is tailored for the maritime domain and auto-

matic identification system (AIS) data exploitation through

the use of an Ornstein-Uhlenbeck process driven stochastic

process model that captures vessel motion characteristics. We

demonstrate the efficacy of this approach on a real data set.

Index Terms— Change point models, Ornstein-Uhlenbeck

processes, predictive models, Maritime traffic analysis

1. INTRODUCTION

Long term forecasting of vessel routes is a highly desired

capability for safety analysis and planning in maritime sit-

uational awareness [1–3]. This work aims to perform tra-

jectory forecasting given trajectory samples in the form of

online received Automatic Identification System (AIS) mes-

sages from a certain vessel based on a trajectory corpus com-

prised of recorded AIS streams. These messages report the

location and velocity of vessels in an asynchronous and in-

termittent fashion. Recorded AIS data facilitates learning of

patterns of trajectories and their quantitive summaries offline.

These patterns are then used for forecasting future position

of a vessel by assessing how well the live stream fits into the

learnt patterns and accordingly combining predictions output

by each pattern.

We propose a hierarchical generative model that com-

prises a stochastic process (SP) with temporal change points

and associated parameter distributions modelling classes of
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continuous state trajectories. Such change point parameters

can be viewed as an encoding of a piece-wise continuous

function that maps time to the parameter values to which the

underlying SP model is conditioned, thereby capturing piece-

wise stationary phenomenon. We capture the variability in

the trajectories from the same class by using random variable

change points and parameters.

The change point parameters for a given trajectory class

constitute a directed Markov chain. Bayesian trajectory fore-

casting hence involves computing the prediction density over

the state for selected future time instants over these chains (or,

walks over the graph obtained as the join of these chains [4])

and computing the class likelihoods (or, the walk likelihoods)

given the observations received so far. We provide explicit

formulae and Monte Carlo (MC) computational procedures

that specify a data driven trajectory forecasting algorithm.

Previous work on traffic and trajectory analysis has con-

sidered Gaussian process models and their sparse variants for

modelling continuous trajectories in surveillance, robotic per-

ception, and, anomaly detection (see, e.g., [5–7]). In [8], GP

regression is used to learn a distribution over continuous state

trajectories using intermittent observations. The cubic com-

putational complexity of GP regression with the number of

data samples and the non-stationary nature of maritime tra-

jectories, however, complicate their use.

Parametric models that follow from kinematics, on the

other hand, have lead to efficient and interpretable trajec-

tory representations. For example, [9] proposes a family of

stochastic models that are conditioned on a future position

intended as the destination. We use an Ornstein-Uhlenbeck

(OU) process model for capturing vessel velocity characteris-

tics stemming from restricted maneuverability in the maritime

domain. These models have proved useful in the maritime

domain for streaming-only AIS based prediction [10, 11]

and traffic visualisation [12]. This work accommodates OU

driven kinematic models in a hierarchical random change-

point model for enabling data driven forecasting.

The article is organised as follows: Sec. 2 provides the

mathematical problem definition. The proposed hierarchical

trajectory model and approximate Bayesian computations are

8459978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



detailed in Sec. 3 and 4, respectively. We discuss learning

of relevant distributions in Sec. 5. Then, we demonstrate the

proposed approach with real data in Sec. 6 and conclude.

2. PROBLEM DEFINITION

We consider AIS messages reporting position and velocity of

vessels labelled with a time tag and a unique vessel identi-

fication number. Let us denote all messages retrieved from

vessel with ID l by d
plq. Each message d P d

plq is a pair

d “ px, tq where t is a time tag and x captures a state ob-

servation x fi rs, 9ss such that s is the location and 9s is the

velocity. These messages are collected with irregular time in-

tervals. Let us denote all such messages by D fi tdplqu.

Now, let us consider an online AIS stream from some ves-

sel and denote the most recent messages by d fi p̄t, x̄q and a

future state at tf by xf . Our goal is to specify a (forecast)

distribution for the (associated) random variable Xf that is

conditioned on the recorded data D and the streaming data d

and generates x̄. Let us consider the probability density func-

tion (PDF) of this distribution:

ppxf |d,D; tf q “
ÿ

yPY

ppxf |d̄,D, y; tf qppy|Dq,

“
ÿ

yPY

ppxf , x̄|Dy, y; t̄, tf q

ppx̄|Dy, y; t̄, tf q
ppy|Dq, (1)

where y is a class variable taking values from a finite set of

(trajectory) classes Y , and, Dy Ă D is the set of trajectories of

class y. Here, the product of the PDFs inside marginalisation

in the first line is often referred to as a generative model. In

the second line, both the numerator and the denominator are

evaluations of a class conditional density ppx|., yq at rxf , x̄s
and x “ x̄, respectively. This PDF is similar to the “posterior

predictive distribution” in a regression context [13].

The partitioning of the data D into classes can be per-

formed in an unsupervised/automated fashion using one of

the many methods in the literature (see, e.g., [14] for a re-

view and [15] for a variational method). We give details of

our approach later in Sec. 5.

In the rest of this article, we will avoid explicit condition-

ing over the observation times unless it is inevitable, for the

sake of simplicity in notation.

Now, let us focus on the class conditional density in (1)

and assert the assumption that the trajectory observations ad-

mit a parametric representation. It follows that

ppx|Dy, yq “

ż

ppx|ψ,Dy , yqppψ|Dy, yqdψ

“

ż

ppx|ψqppψ|Dy , yqdψ (2)

where ψ capture parameters that specify the distribution on

the state observations. The second line above follows from

the assumption that the state observations are fully explained

by ψ and hence are conditionally independent from the other

variables.

Our problem is to realise (1) by substituting from (2) for

data driven trajectory forecasting. In the next section, we de-

tail the PDFs inside the integral in (2). Then, in Sec. 4, we

introduce a MC approximation for its evaluation.

3. THE CLASS CONDITIONAL DENSITY

3.1. Route generating model ppx|ψq

A route is a spatial trajectory sptq that a vessel follows tS ď
t ď tE where tS and tE indicate the starting and end times,

respectively. This trajectory concatenated with the velocity

vector of the vessel 9sptq constitute a state trajectory xptq fi

rsptq, 9sptqs for tS ď t ď tE . We treat xptq as a realisation of

a random variable associated with a stochastic process, i.e.,

x is a realisation of a stochastic process with the boundary

conditions given by xptSq, xptEq, respectively.

Each realisation x involves M change-points modelling

changes of path as the journeys are typically divided into

legs. These change times are denoted by τ “ rτ1, . . . , τM s
and satisfy tS ă τ1 ă . . . ă τM ă tE . The state tra-

jectory is observed at N points x “ rxpt1q, . . . , xptN qs for

tS ă t1 ă . . . ă tN ă tE and at the boundary points

Bx fi pxptSq, xptEqq. Let us define the time boundaries

as Bt fi rtS , tEs and denote the data collection times by

t “ rt1, . . . , tN s. Then, the observation likelihood factorises

in accordance with a change-point model [16]:

ppx|τ , θ; t, Bx, Btq “
M`1
ź

i“1

ppxi|θi; ti, Bxi, Bτiq, (3)

where xi fi txptkq|τi´1 ă tk ă τiu are the observations as-

sociated with the ith leg excluding the boundary points Bxi fi

pxτi´1
, xτiq suggesting that xpτi´1q “ xτi´1

and xpτiq “
xτi , repsectively. Here, τ0 “ tS and τM`1 “ tE . The param-

eter vector θi specify the likelihood induced by the selected

stochastic process family leading to the journey parameters

θ fi rθ1, . . . , θM`1s. The likelihood is also a function of

the observation times ti fi ttk|τi´1 ă tk ă τiu, and, the

time boundaries Bτi fi rτi´1, τis. Note that θ, Bτis and Bxis

constitute ψ for an arbitrary parametric model. We explic-

itly specify this likelihood for an Ornstein-Uhlenbeck process

driven kinematics model in the next subsection.

3.2. Ornstein-Uhlenbeck driven stochastic kinematics

Let us consider the data likelihood in (3) for a state trajectory

generated by an Ornstein-Uhlenbeck process 9s. An OU pro-

cess is equivalently specified by the state dynamics given by

:sptq “ Γ pv ´ 9sptqq ` H 9nptq (4)

for some t P rτi´1, τis where n is a sample generated by a

2-D Wiener process. Here, v “ rvx, vysT is the expectation

of 9s over time and also acts as a control input thereby leading

8460



to a mean-reverting behaviour. The characteristics of this be-

haviour is determined by Γ and the process noise covariance

HH
T . We assume that the eigen-vectors of Γ are the unit

vector along v and its π{2 rotated version vK and the noise

terms are independent along these directions [17], i.e.,

E “ rv,vKs,Γ “ E

„

γ1 0

0 γ2



E
T ,H “ E

„

σ1 0

0 σ2



.

(5)

The state dynamics which relate the location and velocity

components for the case is given by

9xptq “

„

0, I

0, ´Γ



xptq `

„

0

Γ



v `

„

0

H



9nptq, (6)

where I and 0 are the 2 ˆ 2 identity and null matrices, respec-

tively.

Let us introduce θi “ rvi, γ1,i, γ2,i, σ1,i, σ2,is and con-

sider the data likelihood in (3). The state dynamics (6) with

boundary conditions Bxi “ rxτi´1
, xτis at Bτi “ rτi´1, τis

induce a likelihood that is first-order Markov conditioned on

θi and the boundary conditions [10]:

ppxi|θi; ti, Bxi, Bτiq “ ppxi,1|Bxi,1, θi; ti,1, Bτi,1q

ˆ
Di
ź

k“1

ppxi,k|xi,k´1, θi; ti,k, ti,k´1q

ˆ ppBxi,2|xi,Di
, θi; Bτi,2, ti,Di

q (7)

where Di is the number of entries in xi (and, ti) and xi,k de-

notes the kth entry. Here, all the factors are of the same form

with the first and last terms taking into account the bound-

ary conditions and they are Gaussians. Specifically, for some

state values x2, x1 and observation times t2, t1,

ppx2|x1, θ; t2, t1q “

N px2;Φpt2 ´ t1,Γqx1 ` Ψpt2 ´ t1,Γqv,Σnq, (8)

where Φ, Ψ, and, Σn are given by [10]:

Φp∆t,Γq “ Ẽ

„

I,
`

I ´ expp´Γ∆tq
˘

Γ
´1

0, expp´Γ∆tq



Ẽ
T ,

Ψp∆t,Γq “ Ẽ

„

∆tI ´
`

I ´ expp´Γ∆tq
˘

Γ
´1

I ´ expp´Γ∆tq



Ẽ
T

and, Ẽ “ I bE with b denoting the Kronecker product. The

covariance of concern is given by

Σn “ Ẽ

´

Σ1 ˝ Σ2p∆tq
¯

Ẽ
T

∣

∣

∣

∣

∆t“t2´t1

(9)

where ˝ denotes the Hadamard product of the two matrices

and Σ1 and Σ2p∆tq are defined in [10, Eq.s (41),(52)–(55)].

3.3. Trajectory class parameter distributions

Let us consider the class parameter PDF ppψ|Dpyq, yq for all

the parameters introduced in the previous sections, i.e.,

ψ “ rθ1, Bx1, Bτ1 . . . , θM`1, BxM`1, BτM`1s. (10)

The parameters admit an ordering with respect to time. The

boundary states are generated by the previously introduced SP

model. We introduce the modelling assumption that param-

eters associated with different segments of the change-point

model are independent. Thus, the parameter PDF factorises as

ppψ|yq “ ppxτ0 , τ0|yq
M`1
ź

i“1

pp∆τi, θiqppxτi |θi, xτi´1
,∆τiq

(11)
where ∆τi “ τi ´ τi´1 are the length of time intervals be-

tween parameter switches, and, conditioning on data is not

shown for simplicity in the notation.

Note that the boundary state random variables generating

xτis admit a Markov chain with transition densities specified

by the SP model parameters and the time elapse of the seg-

ments, i.e., ∆τis. The location components of these states are

journey way-points. Therefore, (11) admits a Markov graph

in the form of a chain.

As a result, the class parameter density in (11), the OU

driven SP model in (7)–(9) and the change point model in (3)

uniquely specify the class conditional density in (2) which is

instrumental to data driven trajectory forecasting in (1). The

integral over the parameters, however, do not admit analytic

expressions for this density. In the next section, we provide a

MC approximation to this density which leads to a Gaussian

mixture forecast density.

4. MONTE CARLO APPROXIMATION TO THE

FORECAST DENSITY

Let us rewrite the class conditional forecast density by omit-

ting conditioning on the data and the observation times for the

sake of simplicity:

ppxtf |x̄, yq “
1

ppx̄|yq

ż

ppxtf |x̄,ψqppx̄|ψqppψ|yqdψ. (12)

The MC approximation [18] to the above integration is

obtained by first sampling from the class parameter distribu-

tion and obtaining the sample set

ψplq „ ppψ|yq i “ 1, . . . , L (13)

and using the MC method summation formula [18, Chp. 3]

which leads to the approximation given by

ppxtf |x̄, yq «
1

řL

l1“1
ωpl1q

L
ÿ

l“1

ωplqppxtf |x̄,ψplqq, (14)

ωplq
fi ppx̄|ψplqq. (15)

where the PDF inside the summation in (14) is nothing but

(3),(7)–(9) evaluated for the argument xtf and the boundary

conditions, change point times and parameters selected in ac-

cordance with x̄,ψplq. Similarly, the weights in (15) are the

observation likelihood of trajectory observation x̄ for class y.
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The parameter samples used are generated from the class

parameter distribution in accordance with the factorisation

in (11). First, we set τ0 “ 0 and then (with a notation that

uses PDFs in place of the associated random variables) pro-

ceed as follows:

xplq
τ0

„ ppxτ0 |yq,

for i “ 1, . . . ,M ` 1

p∆τ
plq
i , θ

plq
i q „ pp∆τi, θi|yq,

xplq
τi

„ ppxτi |∆τ
plq
i , xplq

τi´1
, θ

plq
i q (16)

As a result, the proposed computational procedure for trajec-

tory forecasting starts with this sampling procedure and pro-

ceeds by evaluating (14) and (15), and substituting them in (1)

in place of the class conditional PDF.

5. LEARNING CLASS PARAMETER DENSITIES

The learning procedure begins with the partitioning of the tra-

jectory corpus D, as aforementioned. For the purpose of po-

sition forecasting, we classify these trajectories with respect

to their initial and final state. We use a fixed spatial grid

tSsu such that the cells Ss are mutually exclusive and their

union cover the spatial region the corpus lies in. Therefore

d
plq P D is labelled as pb, dq if and only if xptSq P Sb and

xptEq P Sd. All trajectories with the same label constitute

an associated Dy . The class posterior ppy|Dq in (1) is found

by using an equal-probability prior and the cardinality ratio of

Dy and D as the likelihood.

Next, we perform approximate learning of the boundary

condition distributions by using change point detection for

each trajectory in the class labelled data set. Specifically,

for each class y, we use the algorithm in [19] and obtain

estimates of change point timings τ̂ plq for each trajectory

d
plq in Dy . Then we fit a Gaussian mixture model for these

timings using expectation maximisation [13]. The resulting

number of components yield the number of change points

M for each class. We also have obtained segments of trajec-

tories which we use to find maximum likelihood estimates

of the parameters ψ̂plq in (10) [17]. We use τ̂ plq, ψ̂plq from

all d
plq P Dy and find kernel density estimates [20] ap-

proximating pp∆τi, θi|yqs in (16). The samples of boundary

conditions are generated from the SP model given parameter

samples from these distributions.

6. EXAMPLE

In this section, we demonstrate the proposed algorithm us-

ing real AIS data collected over a two months period between

01.04.2016´01.06.2016 from a region at the Ionian Sea. The

grid based trajectory clustering explained in Sec. 5 is used

with a 15 ˆ 15 grid over this region which results with 128

distinct classes depicted using a colour codes in Fig. 1(a). The

learning procedure detailed in Sec. 5 results with the chains
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Fig. 1. Illustration of the data driven forecast: (a) AIS data

and trajectory classes (colour coded). (b) Subgraph queried

for trajectory forecasting (c). Querying trajectory (yellow

crosses) and forecast densities obtained with 2e4 s steps.

whose join is the graph G seen in this figure. This graph has

265 nodes and 128 walks over 318 edges. The node locations

here are found by taking the expectation of the marginal po-

sition distributions of the associated boundary conditions xv
induced by the parameter distributions learnt.

The proposed forecasting algorithm is used with a sub-

graph H that captures 3 walks given in Fig. 1(b). The walks

lengths are found as M “ 3, 4, 4, from node 1 towards nodes

16, 17 and 18. The posterior class probabilities ppy|Dq are

approximately 0.6, 0.2 and 0.2, respectively. We query this

graph H for a forecast with 10 initial samples of a trajectory

depicted with yellow crosses in Fig. 1(c). The proposed algo-

rithm (13)–(16) is used for a future time tf that is 2e4 s after

the last observation time stamp (with L “ 500 samples for

MC computations). We repeat these computations with 2e4 s

steps into the future yielding the forecasts in Fig. 1(c). The

forecasts demonstrate that the “Y” junction in the data asso-

ciated with H(Fig. 1(b)) is learnt by our model and reflected

in the forecasts of the proposed algorithm.

7. CONCLUSION

In this article, we proposed a novel SP change point model for

data driven trajectory forecasting in the maritime domain. We

introduced MC computational procedures and obtained Gaus-

sian mixture forecast densities. We demonstrated the efficacy

of our approach on a real data set. Future work will focus on

learning class parameter distributions from data.
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