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ABSTRACT

The problem of quickest detection of significant events in net-
works is studied. A distributed setting is investigated, where
there is no fusion center, and each node only communicates
with its neighbors. After an event occurs in the network, a
number of nodes are affected, which changes the statistics
of their observations. The nodes may possibly perceive the
event at different times. The goal is to design a distributed
sequential detection rule that can detect when the event is
“significant”, i.e., the event has affected no less than η nodes,
as quickly as possible, subject to false alarm constraints. A
distributed algorithm is proposed, which is based on a novel
combination of the alternating direction method of multipli-
ers (ADMM) and average consensus approaches. Numerical
results are provided to demonstrate the performance of the
proposed algorithm.

Index Terms— ADMM, average consensus, distributed
algorithm, network event detection, quickest change detection

1. INTRODUCTION

We are interested in a network event detection problem, in
which the network consists of a set ofL interconnected nodes.
We consider a distributed setting, where there is no fusion
center in the network, and information exchanges are only
among neighbors. Following the occurrence of an event in the
network, one or multiple unknown nodes are affected, which
changes the distribution of their observations. Moreover, the
event can be dynamic, and affects more nodes over time. Our
goal is to detect “significant” event quickly before it may po-
tentially dominate the whole network. Specifically, the goal
is to detect if more than η nodes are affected, as quickly as
possible, subject to false alarm constraints. Applications of
this model can be found in epidemic detection [1, 2], spread-
ing viruses in computer networks [3], environmental monitor-

Research reported in this paper was sponsored in part by the Army Re-
search Laboratory under Cooperative Agreement W911NF-17-2-0196 (IoBT
CRA). The work of S. Zou and V. V. Veeravalli was also supported in part by
the National Science Foundation (NSF) under grant CCF 16-18658, and by
the Air Force Office of Scientific Research (AFOSR) under grant FA9550-
16-1-0077.

ing [4], and intrusion detection in the Internet of Battlefield
Things [5].

This problem has been studied previously in a centralized
setting [6,7], where there is a fusion center that collects infor-
mation from all the nodes without delay. A Spartan CuSum
(S-CuSum) algorithm was proposed. At each time k, the
generalized likelihood ratio test (GLRT) between the two hy-
potheses of whether or not there are at least η sensors affected
by the event is computed. An alarm is raised if the GLRT is
above a threshold; otherwise, a new sample is taken at each
node. It was shown that such a test is equivalent to the one that
compares the sum of the smallest L−η+1 local CuSums [8]
to the same threshold. The S-CuSum algorithm was shown
to be first-order asymptotically optimal as the false alarm rate
goes to zero. A Network CuSum (N-CuSum) algorithm was
further developed, which exploits the fact that the event prop-
agates along edges in the network, so that the affected nodes
form a connected subgraph. The N-CuSum was also shown
to be first-order asymptotically optimal, and it has better per-
formance than S-CuSum, numerically.

However, the centralized algorithms are often difficult to
implement due to limited communication bandwidth and long
communication distance (hence delays), especially in large-
scale networks. Moreover, for a sequential detection problem,
to make a timely decision, the computational efficiency is of
particular interest. In a centralized setting, the computation
needs to be done at one fusion center, the complexity of which
usually scales with the network size. Third, the event usu-
ally propagates locally in the network (along network edges),
e.g., opinion propagation in social networks. Distributed al-
gorithms address all the three concerns: (i) distributed algo-
rithms do not need a fusion center; (ii) distributed algorithms
distribute computational burden to all nodes in the network so
that the computation can be done in parallel; and (iii) infor-
mation exchanges are only among neighbors, which naturally
incorporates the local nature of the event.

In this paper, we construct a distributed implementation
of S-CuSum in [7]. We note that distributed quickest change
detection has been studied in [9, 10], which assume that all
the nodes in the network are affected after the event occurs,
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and the goal is to quickly detect the event (η = 1). Here we
consider a more general setting, where an event first affects
a subset of nodes, and then propagates to affect additional
nodes. We are interested in detecting the event after it has
affected at least η nodes.

The proposed algorithm is a three-step procedure. In the
first step, each node distributedly learns which nodes have
the smallest L − η + 1 local CuSums using the alternating
direction method of multipliers (ADMM) approach [11, 12].
In the second step, each node distributedly computes the sum
of the smallest L− η+ 1 local CuSums using the result from
the first step and an average consensus algorithm [13]. In the
third step, an alarm is raised if the statistic at any node exceeds
a threshold. This three-step procedure is repeated every time
a new sample is observed until an alarm is triggered.

For the proposed distributed algorithm, the computational
complexity at each node is linear in the number of its neigh-
bors, and communication is only between neighbors. We
study the performance of the proposed distributed algorithm
numerically. We also compare its performance to the central-
ized S-CuSum algorithm.

2. PROBLEM MODEL

Consider a set of L nodes interconnected according to an un-
weighted, undirected graph G = (V,E), where V is the set
of vertices and E is the set of edges. Each node observes
samples of some process sequentially in a synchronized fash-
ion. There is no fusion center in the network, and each node
i is only allowed to exchange information with its neighbors,
denoted by N (i). If an event occurs in the network and af-
fects node i at some unknown time vi (change-point), then
the distribution of the samples at node i changes from g0 to
g1

1. Specifically, if we assume that the samples are indepen-
dent and denote the observation made by node i at time k by
Xi[k], then

Xi[k] ∼
{
g0, if k < vi,
g1, if k ≥ vi.

(1)

We are interested in sequentially detecting a “significant”
event, i.e., when the event has affected no less than η nodes
in the network. Specifically, if an alarm is triggered at a time
when less than η nodes are affected, it is considered as a false
alarm.

We denote by v = {v1, . . . , vL} the set of all change-
points, and assume that this set is unknown. Without loss of
generality, we further assume that v1 ≤ v2 ≤ · · · ≤ vL, and
that the ordering is unknown in advance. Therefore, vη is the
first time at which there are no less than η affected nodes, and
the problem is then to detect the change at vη as quickly as
possible subject to false alarm constraints.

1In this paper, we focus on the case where all the sensors have identi-
cal pre-/post-change distributions. The results can be easily generalized to
heterogeneous sensors with different pre-/post-change distributions.

We let di = vi+1− vi denote the time it takes the event to
propagate from i affected nodes to i + 1 affected nodes, and
let d = {d1, . . . , dL−1}. We use Pv to denote the probability
measure of the samples with change-points being v, and let
Ev denote the corresponding expectation.

For any stopping rule τ , we define the worst-case average
run length (WARL) to false alarm:

WARL(τ) = inf
v:vη=∞

Ev[τ ].

For any fixed {dη, dη+1, . . . , dL−1}, we further define the
worst-case average detection delay (WADD) under Pollak’s
criterion [14]:

JP[τ ] = sup
v:v1≤···≤vη<∞

Ev[τ − vη|τ ≥ vη].

Our goal is to construct a distributed algorithm that achieves

inf
τ

JP[τ ], s.t. WARL(τ) ≥ γ. (2)

3. THE S-CUSUM ALGORITHM

In this section, we briefly review the S-CuSum algorithm for
the centralized setting [7].

The quickest detection problem in Section 2 is reformu-
lated as a dynamic hypothesis testing problem, i.e., to distin-
guish the following two hypotheses at each time k:

H0[k] :

L∑
i=1

1{vi≤k} < η,

H1[k] :

L∑
i=1

1{vi≤k} ≥ η. (3)

The null hypothesis corresponds to the scenario in which
there are less than η affected nodes at time k, the alternative
hypothesis corresponds to the scenario in which there are
η or more affected nodes at time k, and both the null and
alternative hypotheses are composite.

The generalized log-likelihood ratio for this composite
hypothesis testing problem is computed as follows:

W [k] = log

 max
v:

∑L
i=1 1{vi≤k}≥η

Pv(X[1, k])

max
v:

∑L
i=1 1{vi≤k}<η

Pv(X[1, k])

 , (4)

where X[k] = {X1[k], . . . , XL[k]}, and X[k1, k2] =
{X[k1], . . . ,X[k2]}. The corresponding stopping time is
then given by comparing W [k] against a pre-determined pos-
itive threshold: τ̃(b) = inf{k ≥ 1 : W [k] > b}, where b is
selected to meet the false alarm constraint.

It was shown in [7] that the above test is equivalent to

τ̂(b) = inf

k ≥ 1 : min
S⊆{1,...,L}
|S|=L−η+1

∑
i∈S

Wi[k] ≥ b

 , (5)
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where Wi[k] = max
1≤vi≤k

∑k
j=vi

log g1(Xi[k])
g0(Xi[k])

, is the local

CuSum statistic at node i and time k [8]. We refer to (5)
as the S-CuSum algorithm. Here, it is clear that S-CuSum
first determines the smallest L − η + 1 local CuSums, com-
putes their sum, and then compares the sum to a threshold b.
The S-CuSum algorithm was shown to be first-order asymp-
totically optimal [7, Theorem 4].

4. DISTRIBUTED S-CUSUM

In this section, we propose a distributed algorithm for the
problem in Section 2. The distributed algorithm is a three-
step procedure. The first step is to distributedly learn which
nodes have the smallest L − η + 1 local CuSums using dis-
tributed optimization [11, 12], the second step is to compute
the average of the smallest L− η+1 local CuSums using av-
erage consensus [13], and the third step is to decide whether
to stop by comparing the local statistic to a threshold b. Such
a procedure is repeated every time a new sample is observed,
until an alarm is triggered.

Step 1: Distributed optimization. If we denote by
W [k] = [W1[k],W2[k], . . . ,WL[k]]

>, and α(k) ∈ RL, then
the S-CuSum statistic in (5) is equivalent to:

min
α(k)

(α(k))>W [k], (6)

s.t. α(k)(i) ∈ {0, 1},∀1 ≤ i ≤ L,
1>α(k) = L− η + 1,

where α(k)(j) is the j-th element of α(k). We define a set

C := {α ∈ RL : α(j) ∈ [0, 1],1>α = L− η + 1},

and further define the following function

θC(α) =

{
0, if α ∈ C,
∞, otherwise. (7)

In the distributed setting, letα(k)
i ∈ RL denote the local copy

of the optimization variable at node i and time k, then fol-
lowing steps similar to those in [11], we can show that (6) is
equivalent to

min
α

(k)
1 ,α

(k)
2 ,...,α

(k)
L ,Zi,j

L∑
i=1

(
α

(k)
i (i)Wi[k] + θC(α

(k)
i )
)
,

s.t. α
(k)
i = α

(k)
j = Zi,j ,∀(i, j) ∈ E, (8)

where Zi,j is an auxiliary variable imposing the consensus
constraint on neighboring nodes i and j. Since it is assumed
that G is connected, the last condition in the constraint means
that α(k)

i = α
(k)
j ,∀1 ≤ i, j ≤ L.

Let f (k)i (α
(k)
i ) = α

(k)
i (i)Wi[k] + θC(α

(k)
i ). Then, (8)

Algorithm 1 ADMM [11]
Input & Initialization:{
λ
(0)
i , δ

(0)
i , fi

}L
i=1

, t0
c : algorithm parameter
t← 0
Method:
while t < t0 do

for i = 1 to L do
λ
(t+1)
i ← (OOOfi+2c|Ni|I)−1

(
c|Ni|λ(t)

i +c
∑
j∈Ni λ

(t)
j −δ

(t)
i

)
end for
for i = 1 to L do

δ
(t+1)
i ← δ

(t)
i + c

(
|Ni|λ(t+1)

i −
∑
j∈Ni λ

(t+1)
j

)
end for
t← t+ 1

end while
Return

{
λ
(t0)
i , δ

(t0)
i

}L
i=1

can be rewritten as

min
α

(k)
1 ,α

(k)
2 ,...,α

(k)
L ,Zi,j

L∑
i=1

f
(k)
i (α

(k)
i ), (9)

s.t. α
(k)
i = α

(k)
j = Zi,j ,∀(i, j) ∈ E.

We note that different from [11], f (k)i depends on the local
CuSum statistic Wi[k], which changes with k. A straightfor-
ward approach is to updateWi[k] at each time k, ∀1 ≤ i ≤ L,
and then apply the ADMM algorithm in Algorithm 1 with ar-
bitrary initializations of λ(0)

i and δ(0)i , 1 ≤ i ≤ L until it con-
verges, by choosing a large enough t0. We note that OOOfi(α) is
the gradient of fi atα if fi is differentiable, or is a subgradient
if f (k)i is non-differentiable. The minimizers and multipliers
for ADMM are then given byα(k)

i = λ
(t0)
i , and β(k)

i = δ
(t0)
i ,

for 1 ≤ i ≤ L. However, this approach is inefficient in that it
has to repeatedly apply Algorithm 1 with independent initial-
izations at each time k with a large t0. This will require many
rounds of computations and local information exchanges.

To construct an efficient algorithm, we use the output
of the ADMM algorithm at time k as the initialization of
the ADMM algorithm at time k + 1, i.e., λ(0)

i ← α
(k)
i and

δ
(0)
i ← β

(k)
i (see Algorithm 3). The idea is that although

f
(k)
i changes with time, the minimizers α(k)

i , 1 ≤ i ≤ L do
not change very fast with k, for those entries corresponding
to the affected nodes. Therefore, a smaller t0 should be able
to guarantee accurate recovery of local α(k)

i , for 1 ≤ i ≤ L.
Step 2: Average consensus. Suppose M ∈ RL×L is a

matrix satisfying the following conditions.
• M · 1 = 1.
• M> =M .
• Mij > 0 if node i and node j are one-hop neighbors,

andMij = 0, otherwise.
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Algorithm 2 AvgCon
Input & Initialization:{
d
(k)
i ,α

(k+1)
i ,α

(k)
i ,Wi[k + 1],Wi[k]

}L
i=1

, t1
t← 0
Method:
For 1 ≤ i ≤ L,

d
(k+1)
i ←

∑
j∈Ni

Mi,j

(
d
(k)
j +α

(k+1)
j (j)Wj [k + 1]

−α(k)
j (j)Wj [k]

)
while t ≤ t1 do
d
(k+1)
i ←

∑
j∈NiMi,jd

(k+1)
i , for 1 ≤ i ≤ L

t← t+ 1
end while
Return

{
d
(k+1)
i

}L
i=1

• The second largest eigenvalue modulus is less than 1.
After the first step, each node i has its local α(k)

i , i.e., each
node has an estimate of which nodes have the smallest L −
η + 1 local CuSums. But every node does not know the
CuSum statistics of other nodes. To compute the average of
the smallest L − η + 1 local CuSums, we then apply the av-
erage consensus (AvgCon) algorithm, which is described in
Algorithm 2. We note that as t1 increases, d(k+1)

i converges
to
∑
j α

(k+1)
j (j)Wj [k + 1]/L, for 1 ≤ i ≤ L.

Step 3: Stopping rule. The algorithm stops and raises an
alarm if any of the d(k)i goes above a pre-specified threshold

b, i.e., the stopping time is τd = inf

{
k : max

1≤i≤L
d
(k)
i ≥ b

}
.

The distributed S-CuSum algorithm is summarized in Al-
gorithm 3.

5. NUMERICAL RESULTS

Fig. 1. A growing event in a lattice network.

In this section, we present numerical results showing the
comparison between the proposed distributed S-CuSum (Al-
gorithm 3) and the centralized S-CuSum [7] algorithms.

We consider a 3 × 3 lattice network with 9 nodes (see

Algorithm 3 Distributed S-CuSum
Input & Initialization:{
α

(0)
i ,β

(0)
i

}L
i=1

, d(0)i ← 0, 1 ≤ i ≤ L
c, t0, t1
k ← 0, τd ← 0
Method:
while τd = 0 do
Observe Xi[k + 1], for 1 ≤ i ≤ L
Wi[k + 1] = (Wi[k])

+ + log g1(Xi[k+1])
g0(Xi[k+1]) , for 1 ≤ i ≤ L{

α
(k+1)
i ,β

(k+1)
i

}L
i=1
←ADMM

({
α

(k)
i ,β

(k)
i , f

(k)
i

}L
i=1

, t0, c

)
{
d
(k+1)
i

}L
i=1
←AvgCon

({
d
(k)
i ,α

(k+1)
i ,α

(k)
i , t1

}L
i=1

, t1

)
if max1≤i≤L d

(k+1)
i ≥ b then

τd = k + 1
end if
k ← k + 1

end while
Return τd
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Fig. 2. Comparison between the distributed S-CuSum and the
centralized S-CuSum.

Fig.1). We set η = 2, g0 = N (0, 1) and g1 = N (1, 1). To
simulate the average detection delay (ADD), we assume that
nodes 2, 4, 5 are affected at time 1, node 6 is then affected
at time 10, and no other nodes are affected later. To simulate
the average run length (ARL) to false alarm, we assume that
nodes 4 and 5 are affected at time 1, and no other nodes are
affected later. For the distributed S-CuSum, we set t0 = 1 in
the ADMM, and t1 = 3 in the AvgCon. We set c = 0.5 for
the ADMM algorithm. We plot ADD versus ARL in Fig. 2
by varying the threshold.

We observe from Fig. 2 that the distributed S-CuSum has
a slight loss in performance compared to the centralized S-
CuSum algorithm, which can be mitigated by increasing t0
and t1. Furthermore, it should be noted that with a larger
network, t0 and t1 may need be increased to achieve good
performance.
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