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ABSTRACT

Piecewise mean-reverting stochastic processes have been recently
proposed and validated as an effective model for long-term object
prediction. In this paper, we exploit the Ornstein-Uhlenbeck (OU)
dynamic model to represent an anomaly as any deviation of the long-
run mean velocity from the nominal condition. This amounts to
modeling the anomaly as an unknown switching control input that
can affect the dynamics of the object. Under this model, the problem
of joint anomaly detection and tracking can be addressed within the
Bayesian random set framework by means of a hybrid Bernoulli fil-
ter (HBF) that sequentially estimates a Bernoulli random set (empty
under nominal behavior) for the unknown long-run mean velocity,
and a random vector for the kinematic state of the object. An addi-
tional challenge is represented by the fact that two extra parameters,
i.e. the reversion rate and the noise covariance of the underlying
OU process, need to be specified for Bayes-optimal prediction. We
propose a multiple-model adaptive filter (MMA-HBF) for anomaly
detection, tracking and simultaneous estimation of the OU unknown
parameters. The effectiveness of these tools is demonstrated on a
simulated maritime scenario.

Index Terms— Anomaly detection; mean-reverting Ornstein-
Uhlenbeck stochastic process; random finite sets; multiple-model
approach; hybrid Bernoulli filter.

1. INTRODUCTION

Anomaly detection strategies have been recently proposed and ap-
plied in maritime traffic monitoring [1–8] in order to detect unex-
pected ship stops or unexpected deviations from standard routes, i.e.
any vessel’s anomalous behavior that might be related to potential
suspicious activity. Unlike previous work on maritime situational
awareness, here the anomaly detection problem is addressed relying
on a novel Bayesian random finite set (RFS) filter [9] that builds on
the changes in the OU process long-term mean velocity of the object.
The Ornstein-Uhlenbeck process has been shown [10–12] to better
model the behavior of real-world targets, such as marine vessels,
with respect to conventional models including the nearly-constant
velocity (NCV) [13]. In this framework, the use of the OU model
turns out to be a valuable tool to represent any deviation from the
nominal motion as an unknown input affecting the object dynamics.
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We can take advantage of recent results on hybrid Bernoulli filter-
ing [14–18], developed for simultaneous input and state estimation
of systems affected by switching unknown inputs, to frame the posed
problem within a Bayesian framework. The hybrid Bernoulli filter
is an attractive Bayesian random set approach to sequentially esti-
mate a Bernoulli RFS for the unknown input (here represented by
any deviation from the nominal long-run mean velocity), and a ran-
dom vector for the system state in the presence of clutter, noise, and
miss-detections. The HBF admits a closed-form solution for linear
Gaussian models. However, this model is not general enough to ac-
commodate object dynamics that switch between different models.
In fact, unlike the NCV, the OU process is governed by a set of pa-
rameters: the long-run mean velocity, the reversion rate, and the pro-
cess noise covariance. In order to perform optimal prediction in the
Bayesian sense, one would need to know such process parameters,
which are clearly unknown in practical applications. The parameters
of the OU process can be estimated from the data in a batch fashion
as presented in [10]. However, this requires full knowledge of the
process realization.

In this paper, we propose to estimate the OU process parameters
on the fly, relying on a multiple-model (MM) architecture [19], [20].
In multiple-model approaches, a bank of filters, each matched to a
different mode of operation, runs in parallel. Then, the overall state
estimate is obtained as a weighted sum of the estimates from each
filter. Our MM framework consists of the parallel implementation of
a bank of hybrid Bernoulli filters, each matched to a different mode
representing the model of motion (characterized by specific OU pro-
cess parameters) that the target is currently traveling under. The ob-
ject state variable is thus extended to include a new multiple-model
parameter which is incorporated into the RFS framework to form
general MM prediction and correction expressions of the generic
HBF equations. This leads to the development of a fully adaptive
filter which aims at deciding which model is the best representation
of the current dynamics of the object without requiring any prior
knowledge of two key parameters of the underlying OU process,
i.e., the reversion rate and the noise level. Based on this decision,
the MMA-HBF seeks to detect any anomalous deviation of the ob-
ject as well as estimate its kinematic state.

2. LONG-TERM OBJECT PREDICTION

A novel method [10], based on the Ornstein-Uhlenbeck mean-
reverting stochastic process, has been lately proposed to address
the problem of long-term object prediction. This model has been
shown [10–12] to be a realistic model of ships’ movements in open
sea which reduces by orders of magnitude the uncertainty region
related to the predicted object position with respect to state-of-
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the-art models. The main difference between the OU process and
other well-established models is a feedback loop which ensures
that the velocity of the object does not diverge over time, but is in-
stead bounded around a finite value representing the desired (cruise)
velocity of the target.

2.1. Mean-reverting dynamic model

Building upon [10], we model the object dynamics with OU stochas-
tic processes. The object velocity is then represented by a stochas-
tic mean-reverting process which tends to drift towards a long-run
mean value with an attraction proportional to the deviation of the
process from this value. Let the target state be represented by x(t) =
[p(t), ṗ(t)], where p(t) and ṗ(t) are the target’s position and, respec-
tively, velocity in a two-dimensional Cartesian coordinate system.
Then, the object’s dynamics are described by the following stochas-
tic differential equation:

ẋ(t) = Ax(t) +Bu+Dẇ(t), (1)

where u = [ux, uy]T is the long-run mean velocity and w(t) is a
standard 2-D Wiener process. The matrices A,B and D are defined
as

A =

[
02 I2
02 −Λ

]
, B =

[
02

Λ

]
, D =

[
02

Ω

]
, (2)

where 02 and I2 are the 2-by-2 null and identity matrices, respec-
tively, Λ ∈ R2×2 quantifies the mean-reversion effect, while Ω rep-
resents the process noise. If Λ has positive and distinct eigenvalues,
Λ can be written as Λ = ḠΓḠ−1, where Γ = diag(γ). The target
state evolution is given by the first moment of the solution of (1),
which takes the form

xk = GΦ̃(tk − tk−1, γ)G−1x(tk−1)

+GΨ̃(tk − tk−1, γ)Ḡ−1u+ wk, (3)

where G = I2 ⊗ Ḡ, with ⊗ denoting the Kronecker product. The
full expressions of Φ̃(t, γ) and Ψ̃(t, γ) can be found in [10], [11].

Clearly, (3) is suitable to represent a non-maneuvering object,
whose long-run mean velocity does not change over time. How-
ever, the model can be easily extended to model linear piecewise
trajectories (such as a ship that navigates by following a sequence of
way-points) where each segment is characterized by a given configu-
ration of kinematic parameters that are piecewise-constant functions
of time.

2.2. Nominal/anomalous object motion

Based on dynamic model (3) described by a mean-reverting OU
stochastic process, the anomaly can be represented by an object that
deviates from a preset route by changing its nominal mean velocity.
Moreover, using a piecewise OU model, the specific mode of motion
νk = i of the object within a given time interval [tk−1, tk] can be
specified by the other two parameters of the process: the reversion
rate Λik and the noise covariance Ωik characterizing mode i.

Under such assumptions, the target under nominal or anomalous
behavior can be modeled by

xk+1 =

{
Φk xk + Ψk dk + wk+1, under H0

Φk xk + Ψk dk + Ψ̄k uk + wk+1, under H1

(4)

where: k is the time index; xk ∈ Rm is the object kinematic state;
dk ∈ Rq is a known input characterizing a target under hypothesis

H0, i.e., that follows its nominal trajectory (dk is the object’s nomi-
nal long-run mean velocity in the time interval [tk−1, tk]); uk ∈ Rq
is an unknown input affecting the object dynamics in the time win-
dow [tk−1, tk] when the object behavior is under hypothesis H1,
i.e., when the target is deviating from its nominal path; νk ∈ M =
{1, 2, ..., µ} is the mode in operation at time k; δk = tk − tk−1;

Φk
4
= Φ(νk, δk) is a known mode-matched state transition matrix

describing the state evolution of the object under a specific mode νk;

Ψk
4
= Ψ(νk, δk) and Ψ̄k

4
= Ψ(νk, δk) are two mode-matched in-

put matrices; wk is a random process disturbance with probability
density function (PDF) pw(νk, ·). Note that the unknown mean ve-
locity term appearing in (4) under H1 is treated, differently from the
deterministic parameter u in (1), as a stochastic process {uk}, in-
dependent of x0, {wk+1} and {vk}. For the observation model, we
consider the measurement set Zk = Ck ∪Yk, where Ck is the finite
set of spurious observations, while Yk is the set of target-originated
measurements with yk received with probability pd ∈ (0, 1], and
given by

yk = Ckxk + vk (5)

whereCk is a known measurement function and vk is a random mea-
surement noise.

3. JOINT ANOMALY DETECTION AND TRACKING

In this section, we review the notion of Hybrid Bernoulli Random
Set (HBRS), that is a special type of RFS introduced by [14–18] in
the context of Bayesian state estimation with switching unknown in-
puts affecting both the dynamic and the measurement model. The
resulting hybrid Bernoulli state-space model allows us to frame and
solve the problem of joint anomaly detection and tracking in a ran-
dom set-based Bayesian framework. Following this approach, it is
possible to obtain an exact recursion in terms of integral equations
that generalize the Bayes and Chapman-Kolmogorov equations used
for the solution of joint input-and-state estimation [21], [22] (i.e.,
when the unknown input is not switching), and standard Bernoulli
filtering [23–25] (i.e., for a system without unknown inputs).

3.1. Hybrid Bernoulli state-space model

The anomalous behavior of the object under tracking can be repre-
sented by means of a switching unknown input, i.e. an unknown
velocity Bernoulli RFS Uk ∈ B(U), where B(U) = ∅ ∪ S(U) is a
set of all finite subsets of the velocity space U ⊆ Rq , while S de-
notes the set of all singletons {u} such that u ∈ U. Thus, we can
model the unknown velocity input Uk, at time k, as a finite set that
can take on either the empty set, when the object dynamics is under
H0 at time k, or a singleton {uk} otherwise, i.e.

Uk =

{
∅, under H0

{uk}, under H1.
(6)

If we further denote the Euclidean space for the object state vector
with X ⊆ Rm, then it is possible to define a new state variable (U , x)
on the hybrid space B(U)× X. This special random set, referred to
as hybrid Bernoulli random set in [14–18], combines the Bernoulli
RFS U , as well as the random state vector x. An HBRS on B(U)×X
is fully specified by (r, f0, f1): with probability 1 − r, the object
is under nominal behavior (U = ∅) with kinematic state distributed
according to a PDF f0(x) defined on X; with probability r, U is a
singleton and the joint input-state variable is distributed according
to a joint PDF f1(u, x) defined on U × X. The HBRS (U , x) can
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be corrected and predicted in a recursive fashion so as to form the
hybrid Bernoulli filter.

3.2. The hybrid Bernoulli filter

Consider the system (4)-(5) with no direct feedthrough of the un-
known velocity input uk to the output yk. In this case, Uk must
be estimated with one step delay, since Zk+1 is the first measure-
ment set containing information on Uk. Hence, the HBF will se-
quentially update the hybrid Bernoulli density f(Uk−1, xk|Zk) of
the unknown velocity set Uk−1 and state xk conditioned on all the
information available up to time k. Let f(Uk−1, xk|Zk−1) be the
prior density at time k. Then, given the measurement set Zk, the
posterior density at time k can be obtained by means of the Bayes
rule

f(Uk−1, xk|Zk) =
η(Zk|xk) f(Uk−1, xk|Zk−1)∫∫

η(Zk|xk) f(Uk−1, xk|Zk−1) δ Uk−1dxk
.

(7)
The prior density at time k + 1 can be computed via the Chapman-
Kolmogorov equation

f(Uk, xk+1|Zk) = (8)∫∫
φ(Uk, xk+1|Uk−1, xk) f(Uk−1, xk|Zk) δUk−1dxk

where the set integral over the hybrid state space is defined as∫
f(U , x)δU dx =

∫
f(∅, x) dx+

∫∫
f({u}, x) du dx. (9)

Exact prediction and correction equations of the hybrid Bernoulli
filter with no direct feedthrough can be obtained by substituting the
transition density φ(Uk, xk+1|Uk−1, xk) and the likelihood function
η(Zk|xk) into (7)-(8) (see [9], [15]). An analytical solution of the
hybrid Bernoulli filtering problem in the case of direct feedthrough
of the unknown input into the output can be found in [14], [15].

4. ADAPTIVE ANOMALY DETECTION AND TRACKING
WITH UNKNOWN PARAMETERS

In order to handle switching parameters that can change the dynamic
model in effect for the object’s motion, single-model approaches like
the one proposed in [9] need to be made to accommodate switched
stochastic systems. To this end, the idea is to rely on the multiple-
model (MM) approach [26]. The true mode of the object is, thus,
supposed to switch according to a homogeneous Markov chain
with known transition probabilities πji = prob (νk = i | νk−1 = j),
i, j ∈ M,

∑µ
i=1 πji = 1. The goal becomes to solve the problem

of anomaly detection and simultaneous state and mode estimation.
This amounts to jointly estimating, at each time k, the velocity
Bernoulli RFS Uk, the state xk, and the mode νk representing spe-

cific OU parameters, given the set of measurements Zk 4= ∪ki=1Zi
up to time k.

4.1. Multiple-model adaptive hybrid Bernoulli filter

For state estimation of jump Markov systems modeled by (4), the
HBRS defined in Section 3.1 needs to be augmented so as to include
the hidden mode of motion ν in the new state variable (U , x, ν).
This is referred to as Multiple Model Hybrid Bernoulli Random Set
(MM-HBRS), and takes values in B(U)× X×M. An MM-HBRS
is fully specified by the probability r of U being a singleton, the

mode-conditioned PDF f0(x, ν), and the mode-conditioned joint
PDF f1(u, x, ν), i.e. by the density

f(U , x, ν) =

{
(1− r) f0(x, ν), if U = ∅

r · f1(u, x, ν), if U = {u}
(10)

with the following integration over the new state space:

µ∑
i=1

ρi
∫
B(U)×X

f(U , x|ν = i) δU dx (11)

where
∫
f(U , x|ν = i) δU dx is given by (9), and ρi

4
= prob(ν =

i|Z) is the mode probability of mode i, given the measurement set
Z . Notice that in (11) f(U , x, ν), which will be referred to as mul-
tiple model hybrid Bernoulli density, integrates to one given that i)
integration with respect to U and x equals 1, f0(x) and f1(u, x) be-
ing conventional PDFs, and ii)

∑µ
i=1 ρ

i = 1. Similar to the single-
model HBF described in Section 3.2, a MM-HBRS can be corrected
and predicted in a recursive fashion so as to form a novel Multiple-
Model Adaptive Hybrid Bernoulli Filter (MMA-HBF).

For the dynamic model, let us assume that i) a target under nom-
inal behavior at time k will start deviating during the sampling in-
terval δk+1 with probability pb; ii) if the target is already deviating
at time k, the anomalous deviation will carry on from k to k + 1
with probability ps. It is further assumed that (U , x, ν) is a Markov
process with joint transitional density

φ(Uk, xk+1, νk+1|Uk−1, xk, νk)

= φ(xk+1, νk+1|Uk, xk, νk)φ(Uk|Uk−1). (12)

In addition, note that

φ(xk+1, νk+1|Uk, xk, νk) (13)

=

{
φ(νk+1|νk)φ(xk+1|xk, νk), if Uk = ∅

φ(νk+1|νk)φ(xk+1|uk, xk, νk), if Uk = {uk}

and

φ(Uk|∅) =

{
1− pb, if Uk = ∅

pb g(uk), if Uk = {uk}
(14)

φ(Uk|{uk−1}) =

{
1− ps, if Uk = ∅

ps φ(uk|uk−1), if Uk = {uk}
(15)

where g(uk) is the initial guess PDF of the unknown velocity input.
The measurement model follows a single-target in clutter model [9]
with likelihood

η(Zk|xk) = ψ(Zk)

1− pd + pd
∑
yk∈Zk

`(yk|xk)

λk κ(yk)

 (16)

where `(yk|xk) is the likelihood of the object-generated measure-
ment, κ(·) describes the distribution of clutter, λk is the number of
received observations at time k, and ψ(·) is the FISST probability
density of spurious-only measurements. Using the above dynamical
and measurement models, exact prediction and, respectively, correc-
tion equations for the proposed MMA-HBF (here omitted due to lack
of space) can be easily obtained.
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Fig. 1: (a) Nominal and true object trajectories. (b)-(c) Measurement
data and true/estimated object positions.

5. SIMULATION RESULTS

The performance of the proposed MMA-HBF, implemented via
Gaussian mixtures, has been tested on a simulated scenario con-
cerning maritime traffic monitoring. The objective is to detect
and track route deviations of a target navigating along a nominal
path with cruise velocity d = [3, 0]Tm/s, while estimating the
mode of motion at each time instant. The evolution of the object
state over time is assumed to follow the piecewise OU model (4),
where each mode of motion corresponds to one set of OU param-
eters Θj = {γj , σj}, j = 1, . . . , µ such that Γj = diag(γj) and
ΩjΩ

T
j = σjI . In particular, we considered Θ1 = {0.1, 0.01},

Θ2 = {0.001, 0.2}, and Θ3 = {0.01, 3}, where Θ1 is the true
mode. Moreover, we used Ψ̄k = Ψk, pd = 0.98, and δ = 5
h. For the filter, we set pb = 0.001, ps = 0.8, r1|0 = 0.5,
x̂1|0 = [10, 10, 0, 3],T P1|0 = diag(103, 103, 102, 102), and
ũ1|0 = [2, 2]T , P̃u1|0 = 103 I2 as mean and covariance of the a priori
PDF g(uk). The object-generated measurements follow model (5)
where vk ∼ N (·; 0, R), with R = diag(502, 502, 10, 10), while
clutter is modeled as a Poisson RFS with an average number of 10
returns per scan and a uniform spatial distribution over the observa-
tion region. The simulation is run over 100 time steps, where the
object deviation from the nominal trajectory is initiated at time step
k = 31 and terminated at time step k = 70. Fig. 1 (a) shows the
nominal and the true trajectory, while Figs. 1 (b)-(c) show the state
estimation performance of the filter for a single realization. It can be
seen from Fig. 2 (a) that the MMA-HBF promptly detects the start
and the end of the anomaly as soon as the target starts deviating and,
respectively, once it moves back to its nominal trajectory. Fig. 2 (b)
shows the mode probabilities computed at each time step. The filter
detects the true object’s mode of motion (mode 1), i.e. it can esti-
mate the unknown mean-reverting rate and noise level parameters
of the OU dynamic model. The estimated long-run mean velocity
is illustrated in Fig. 3. The proposed filter provides accurate ve-
locity estimates under both nominal and anomalous behavior, albeit
slightly degraded in the latter.

Fig. 2: (a) Anomaly detection performance and (b) mode probabili-
ties vs. time.

Fig. 3: Performance in terms of long-run mean velocity reconstruc-
tion under nominal and anomalous object behavior. The anomalous
activity takes place between time step 31 and 70 (this time window
is highlighted by a yellow band).

6. CONCLUSIONS

This work considered the use of a multiple-model adaptive hybrid
Bernoulli filter (MMA-HBF) for joint anomaly detection and tra-
jectory estimation of a single target whose motion is described by
mean-reverting OU stochastic processes with unknown parameters.
The proposed adaptive filter was derived using finite set statistics
and the multiple-model approach. Simulation results show that the
MMA-HBF is a promising candidate for anomaly detection and tar-
get tracking with unknown parameters of the underlying dynamic
model. Future research will focus on validating the MMA-HBF in
real-world examples of maritime surveillance.
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