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ABSTRACT
In this paper, we introduce a generic Bayesian framework for
inferring the intent of a tracked object, as early as possible,
based on the available partial sensory observations. It treats
the prediction problem, i.e. not estimating the object state
such as position, within an object tracking formulation. This
leads to a low-complexity implementation of the inference
routine with minimal training requirements. The proposed
approach utilises suitable stochastic, namely linear Gaussian,
models to capture long term dependencies in the object tra-
jectory as dictated by intent. Numerical examples are shown
to demonstrate the efficacy of this framework.

Index Terms— intent, tracking, destination prediction.

1. INTRODUCTION

1.1. Motivation and Scope
Knowing the destination, arrival time and future trajectory of
a tracked object (e.g. pointing apparatus, vessel, pedestrian,
jet, etc.) offers vital information on intent, enabling predictive
functionalities, timely decision making and automation. Be-
sides robotics [1, 2], it has numerous applications such as in
a) Human computer interaction (HCI): inferring the intended
on-display item, whilst driving, reduces interaction effort [3].
b) Surveillance: predicting destination and trajectory of an
object (e.g. vessel) can unveil anomalies or conflict [4, 5, 6].
c) intelligent vehicles (IV): delivering safer and personalised
driving experience, e.g. by predicting motion of other road
users and driver state [7, 8] or if driver is returning to car [9].

In this paper, we present a Bayesian framework that treats
the tackled intent prediction task, i.e. not estimating the hid-
den state xt such as the object’s position and higher order
kinematics, within a tracking formulation. The adopted ap-
proach capitalises on the premise that the trajectory followed
by an object has long term underlying dependencies driven by
intent. This is a shift away from the traditional viewpoint of
scenes where objects are assumed to move in unpremeditated
manners. It belongs to a higher system level compared with
traditional sensor-level tracking algorithms for estimating xt.

A key aspect of the introduced Bayesian framework is
employing suitable stochastic models that capture the influ-
ence of intent on the object motion and devising inference al-
gorithms to reveal it. This can be effectively achieved via the
low-complexity and efficient bridging distributions formula-
tion with Gaussian linear models. It permits the inference of

the object destination, arrival time and future states, which are
considered here to encapsulate intent.

1.2. Related Work and Proposed Framework

Several studies in the object tracking area consider the task
of incorporating predictive, often known, information on the
object’s destination to improve the accuracy of the state estim-
ates [10, 11], i.e. destination-aware tracking. This is in addi-
tion to plethora of well-established techniques for estimating
the state xt from noisy sensory data [12, 13]. Using mean
reverting processes, such as Ornstein-Uhlenbeck (OU), for
modelling a vessel motion in “global” maritime surveillance,
e.g. [4, 5, 6], is gaining popularity as they yield more accurate
xt estimates. They are intrinsically driven by a defined mean,
e.g. velocity or direction of travel in known high traffic routes.
In this paper, the main objective is inferring the unknown in-
tent of a tracked object, rather than only state estimations.

Various data driven prediction-classification methods rely
on a dynamical model and/or pattern-of-life learnt from pre-
viously recorded data, e.g. [1, 2, 7, 8]. Whilst such tech-
niques typically require substantial parameters training from
extensive data sets (not always available) and can have high
computational cost, a state-space modelling approach is adop-
ted here. It uses known dynamical and measurements mod-
els, with a few unknown parameters, as is common in ob-
ject tracking [12, 13]. Subsequently, an efficient inference
approach, which requires minimal training, is proposed.

Meta-trackers for recognising intent are developed in [14,
15]. They use a discretised state-space and employ recip-
rocal processes or other models from natural language pro-
cessing such as context-free grammars. Whilst the approach
presented in this paper leads to notably less complex infer-
ence routines compared with [14, 15], it utilises continuous
state space models and can treat asynchronous measurements.

Bridging-based inference was introduced in [16, 17],
mainly for HCI [3], as an improvement to directly applying
OU-type processes in [18]. It assumes that an object is head-
ing to one of N possible endpoints. In this paper, we present
a unified treatment and compact overview of this Bayesian
(tracking-based) intent prediction approach with and without
bridging. For example, the null hypothesis H0, i.e. the ob-
ject is not returning to any of the destinations, is addressed
unlike in [16, 17, 18]. Examples from two areas, maritime
surveillance and IV, are shown to illustrate its efficacy.
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2. PROBLEM STATEMENT AND SYSTEM MODEL

Let D = {Di : i = 1, 2, ..., N} be the set of N nominal en-
dpoints (e.g. harbours where a vessel can dock or selectable
on-display icons or locations of interest a pedestrian can walk
to) of a tracked object (e.g. vessel, pointing apparatus or ped-
estrian). Each destination can be an extended region. For sim-
plicity, a Gaussian distribution Di v N (ad

i , Σ
d
i ) is assumed

to model an endpoint where the mean ad
i and covariance Σd

i

represent the centre and orientation-extent of Di, respectively.
We aim to sequentially calculate the probability of each

of Di ∈ D being the intended destination DI . This is stated
as determining the probability of N + 1 hypotheses at tk:

P(tk) = {p(HI = Hi | y1:k) : i = 0, 1, ..., N} ,

where Hi is the hypothesis that Di is the intended destina-
tion, HI is for the unknown DI and H0 is the null hypothesis
such that DI 6∈ D. Based on P(tk) a decision on DI can be
made, e.g. using a MAP, threshold or other decision criterion.
Available (noisy) sensory observations at time instant tk are
y1:k = {y1, y2, ..., yk} for times {t1, t2, ..., tk}. Each yk is
assumed to be derived from a true, underlying, object state
xtk

at tk. The introduced formulation is generally agnostic to
the employed sensing technology and it can treat asynchron-
ous imprecise measurements via continuous-time models. In
this paper, we also seek inferring the posterior p(T |y1:k) of
the arrival time T at DI , if any, and the posteriors p(xt∗ |y1:k)
of the future states of the tracked object such that t∗ > tk.

Approximate motion models that enable inferring intent,
i.e. not necessarily the exact modelling of the object motion,
can suffice. Thus, Gaussian Linear Time Invariant (LTI) mod-
els are adopted since they lead to computationally efficient
predictors, compared with non-linear non-Gaussian models
[13, 19]. The system state xtk

∈ Rs at tk can be written as

xtk
= F (h)xtk−1 + M(h) + εk, (1)

with εk ∼ N (0, Q(h)) is a Gaussian dynamical noise.
Matrices F and Q as well as vector M , which define the
state transition, are functions of the time step h = tk − tk−1.
Similarly, noisy observations yk ∈ Rl are modelled by

yk = Gxtk
+ νk, (2)

where G is a matrix mapping from the hidden state to the ob-
served measurement and noise component is νk ∼ N (0, Vk).

The class in (1) encompasses many models widely used in
tracking applications, e.g. the (near) Constant Velocity (CV)
and others that describe higher order kinematics as well as the
Linear Destination Reverting (LDR) models discussed below.
It results from integrating the motion model Stochastic Differ-
ential Equation (SDE) over the time interval τk = [tk−1, tk].

3. INTENT INFERENCE
Within a Bayesian framework, we have

p(HI = Hi|y1:k) ∝ p(HI = Hi)p(y1:k | HI = Hi) (3)

= p(HI = Hi)p(y1:k−1 | HI = Hi)p(yk | y1:k−1,HI = Hi).

The prior p(HI = Hi) on the ith hypothesis is independent
of observations y1:k and is considered to be known, e.g. from
relevant contextual information or previously learnt pattern-
of-life. The likelihood LHi

k−1 = p(y1:k−1 | HI = Hi) pertains
to the previous time instant tk−1 and is available at tk. Estim-
ating the Prediction Error Decomposition (PED) defined by:
`Hi

k = p(yk | y1:k−1,HI = Hi) suffices to sequentially es-
timate the likelihood LHi

k = p(yk | HI = Hi) = `Hi

k ×LHi

k−1

and consequently the hypotheses probabilities in (3) at tk.
The sought PED is given by: p (yk|y1:k−1,HI = Hi) =∫

p (yk|xtk
,HI = Hi) p (xtk

|y1:k−1,HI = Hi ) dxtk
. Since

the system model is Gaussian LTI, it can be calculated using

`Hi

k = N (yk; Gx̂k|k−1, GΣxx
k|k−1G

′ + Vk), (4)

such that x̂k|k−1 and Σxx
k|k−1 are the the mean and the covari-

ance of the distribution of the predictive state p(xtk
|y1:k−1) =∫

p(xtk
|xtk−1)p(xtk−1 |y1:k−1)dxtk−1 [13]. Thereby, we can

conveniently utilise the Kalman filtering equations to calcu-
late the PEDs in (4) for all considered N + 1 hypotheses.
Whilst x̂k|k−1 and Σxx

k|k−1 are the output of the predict step
of the Kalman filter, the mean and covariance of the state (i.e.
outcome of the correct step with the Kalman gain) are used at
the next time step tk+1. The calculated hypotheses probabilit-
ies are normalised p̂(HI = Hi|y1:k) = p(HI = Hi|y1:k)/ϑk

and ϑk =
∑N

i=0 p(HI = Hi|y1:k) to ensure they add to 1.
However, this simple prediction procedure fundamentally

relies on a formulation that enables capturing the influence of
DI on the object behaviour. In other words, how to condition
on hypotheses {Hi}

N
i=1 for the N nominal destinations whilst

using (1) and (2). Next, we first describe motion models that
naturally incorporate endpoints, then bridging distributions.

3.1. Destination Prediction with LDR Models
The state evolution of a linear destination reverting model is
intrinsically driven by an endpoint Di as per the SDE

dxt = Λ(μi − xt) dt + σdwt, (5)

such that μi is the end-state set by Di, matrix Λ (a design
parameter) stipulates the nature-strength of the reversion of xt

towards μi and wt is a Wiener process. They are based on an
OU process and xt as well as μi can include position, velocity
and higher order kinematics. For instance, whilst the state of
the mean reverting diffusion model consists only of position
(e.g. in 2D and s = 2) with μi = ad

i equal to the location of
Di, the state xt and μi of the equilibrium reverting velocity
model includes velocity [17]. Integrating (5) over interval τk

produces (1) with M(h) a function of the endpoint, i.e. μi.
Hence, N LDR models can be written, one per nominal

endpoint, with μi for the corresponding Di. This introduces
the conditioning on {Hi}

N
i=1 and N Kalman filters can be

utilised to calculate the PED for each endpoint as in (4). A
none LDR-type model is used for H0. However, LDR models
can be sensitive to fine parameter tuning [17] and other popu-
lar motion models, e.g. CV with M(h) = 0 in (1), implicitly
ascertain that the object movements are unpremeditated.
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3.2. Inference with Bridging Distributions

For Hi, i 6= 0, the path of the tracked object, albeit ran-
dom, must end at the intended destination at arrival time T .
Accordingly, a Markov bridge to each nominal endpoint is
built, facilitating intent prediction with any Gaussian linear
motion model, including CV. This can be modelled by an
artificial prior distribution for xT equal to that of Di, i.e.
p(xT | HI = Hi) = N

(
xT ; ad

i , Σ
d
i

)
, or pseudo-observation

ỹi
T with p(ỹi

T = ad
i |xT ) = N (ad

i ; xT , Σd
i ); see [17] for more

details. For simplicity, the former construct is adopted below,

p(yk | y1:k−1,HI = Hi, T ) = p(y1:k | y1:k−1, xT , T ),

i.e. conditioning on prior xT for Di entails conditioning on
arrival time. Thus, we estimate arrival-time-conditioned PED
`Hi

k,n = p(yk | y1:k−1,HI = Hi, T = Tn) and likelihood

LHi

k,n = p(y1:k | HI = Hi, T = Tn) = `Hi

k,n ×LHi

k−1,n for Tn.
However, the arrival time is unknown in practice and a

prior distribution on T is assumed, e.g. from contextual data.
For instance, arrival might be expected uniformly within T =
[ta, tb] and p(T | Hi) = U(ta, tb), e.g. when object is within
a certain range from Di. We can then marginalise arrival time

LHi

k = p(y1:k | HI = Hi) =
∫

T∈T
p(y1:k | HI = Hi, T )

× p(T | HI = Hi)dT, (6)

to obtain the likelihood in (3). A numerical approximation is
applied here to solve the integral in (6) since the arrival time
is a one-dimensional quantity [20], e.g. Simpson’s rule de-
noted by quad(.). This approximation requires q evaluations
of the arrival-time-conditioned PEDs, and thereby likelihoods
for various arrival times Tn ∈ T = {T1, T2, ..., Tq} drawn
from p(T | HI = Hi), e.g. for q quadrature points.

For hypothesis Hi and Tn, one approach to introduce
bridging is by augmenting the system state xtk

with the ar-
tificial prior xT v N (ai

d, Σ
i
d) forming an extended state

zi,n
tk

= [x′
tk

x′
T ]′ and zi,n

tk
∈ R2s. This can be shown to lead

to the extended linear Gaussian state model

zi,n
tk

= Ri,n
k zi,n

tk−1
+ m̃i,n

k + γi,n
k , (7)

[17] where γi,n
k ∼ N

(
0, U i,n

k

)
, PT = [0s×s Is],

Ri,n
k =

[
Hi,n

k

PT

]

, m̃i,n
k =

[
mi,n

k

0s×1

]

, U i,n
k =

[
Ci,n

k 0s×s

0s×s 0s×s

]

,

Hi,n
k =

[
Ci,n

k Q−1(h)F (h) Ci,n
k F ′(h̃)Q−1(h̃)

]
, h̃ =

Tn − tk, m̃i,n
k = Ci,n

k (Q−1(h)M(h)−F ′(h̃)Q−1(h̃)M(h̃))

such that Ci,n
k =

(
Q−1(h) + F ′(h̃)Q−1(h̃)F (h̃)

)−1

; Q(.)

is from (1), 0s×l is an s × l zeros matrix and Is is an s × s
identity matrix. The observation model can be expressed by

yk = G̃ztk
+ νk, (8)

with G̃ = [G 0l×s] where G and νk are from (2).

Given the linear Gaussian nature of the system described
by (7) and (8), the arrival-time-conditioned PED for Hi and
Tn can be sequentially calculated utilising Kalman filtering
equations with the extended state zi,n

tk
in lieu of xtk

in (4), i.e.

`Hi

k,n = N (yk; G̃ẑi,n
k|k−1, G̃Σi,n

k|k−1G̃
′ + Vk) such that ẑi,n

k|k−1

and Σi,n
k|k−1 are the mean and covariance of the predictive

state distribution p(zi,n
tk

|y1:k−1,HI = Hi, Ti), respectively.
In summary, to obtain the likelihood of hypothesis Hi at

tk given the available sensory observations y1:k:
1) Run Kalman filtering calculations q times, one per quadrat-
ure point in Tn ∈ T to estimate arrival-time-conditioned PED
`Hi

k,n and likelihood LHi

k,n = `Hi

k,n × LHi

k−1,n.
2) Apply a numerical approximation to estimate the likeli-
hood in (6), e.g. L̂Hi

k = quad(LHi

k,1, L
Hi

k,2, ..., L
Hi

k,q).
The above two steps are repeated for each of Di ∈ D. It is
noted that for none LDR motion models, e.g. CV, bridging
can be implemented more efficiently as explored in [21].

3.3. Time of Arrival and Future Trajectory Estimation

First, we have: p(T | y1:k) ∝
∑N

i=1 p(y1:k | T,HI = Hi)
× p(T | HI = Hi)p(HI = Hi) by integrating over the dis-
crete set D of endpoints. The conditioned likelihood LHi

k,n, for
all q quadrature points Tn ∈ T are readily available from the
endpoint prediction calculations. For hypothesis Hi, i 6= 0,
we have the approximate posterior: p(T | HI = Hi, y1:k)
≈ 1

κi,k

∑q
n=1 LHi

k,np(Tn | HI = Hi)δ{Tn} such that the nor-

malisation factor is κi,k =
∑q

n=1 LHi

k,np(Tn | HI = Hi) and
δ{Tn} is a Dirac delta located at Tn. Assuming that the arrival
times are the same for all Di ∈ D, we obtain

p(T | y1:k) ≈
1
ηk

q∑

n=1

ψk,nδ{Tn}, (9)

where ψk,n =
∑N

i=1 LHi

k,np(Tn | HI = Hi)p(HI = Hi)

and ηk =
∑q

n=1

∑N
i=1 LHi

k,np(Tn | HI = Hi)p(HI = Hi).
Posterior can be analogously estimated for varying T priors.

For a given arrival time T = Tn and destination Di,
the future state at times t∗ > tk can be attained directly
from the extended model in (7). It is a Gaussian distri-
bution with mean ẑi,n

t∗ = Ri,n
t∗ ẑi,n

k + m̃i,n
t∗ and covariance

Σi,n
t∗ = Ri,n

t∗ Σi,n
k (Ri,n

t∗ )′ + U i,n
t∗ such that h = t∗ − tk. By

integrating over the discrete sets of all endpoints in D and
arrival times in T, it is given by the Gaussian mixture

p(xt∗ | y1:k) ≈
N∑

i=1

q∑

n=1

uk
i,nN

(
xt∗ ; Γẑi,n

t∗ , ΓΣi,n
t∗ Γ′

)
(10)

where uk
i,n = LHi

k,np(HI = Hi)p(Tn | HI = Hi)/$k and

$k =
∑N

i=1

∑q
n=1 LHi

k,np(Tn | HI = Hi)p(HI = Hi);
pruning matrix Γ = [Is 0s×s]. It is noted that the uncertainty
associated with the state prediction typically grows arbitrarily
large as t∗ increases with classical trackers. As shown be-
low, the reliability of the future state estimates can be notably
improved by exploiting the endpoint prediction results.
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4. NUMERICAL EXAMPLES
The following two examples are shown here:
a) Intelligent vehicle (Figs. 1 and 2): predict if and when a
driver is returning to car (N = 1) in a car park from his posi-
tions in 2-D provided by a smartphone (GPS) location service
every 2s. Full track (converted to meters and centered/rotated
at the car) is displayed. Predicted future states from the pre-
dict step of a Kalman filter (i.e. no bridging) are depicted.
b) Maritime surveillance (Fig. 3): predict a vessel destina-
tion out of five possible harbours in a bay, N = 5, from partial
noisy observations of its 2-D locations, e.g. AIS-based. Nine
synthetically generated trajectories are considered; all start
from a rendezvousing area off the coast of the bay. Portions
of the track when the true endpoint is correctly inferred are
highlighted, i.e. a hypothesis fulfills the MAP criterion (most
probable) for at least three successive time steps.
We used a CV model with bridging distributions and Simpson’s
quadrature scheme with q = 41 points from a conservative
uniform prior p(T |HI = Hi), e.g. U(30s, 140s) in Fig. 1
as a pedestrian walks at an average speed of 1.5ms−1. All
hypotheses are equally probable, p(HI = Hi) = 1/(N + 1).

These examples clearly demonstrate the effectiveness of
the proposed framework to predict the object intent, e.g. early
destination inference and accurate arrival time estimates. The
state predictions are noticeably more certain compared with
classical Kalman filtering, especially for t∗ � tk (see row 2
in Fig. 2). It is noted that estimating T via (9) does not entail
additional computations as likelihoods Lk,n are calculated for
determining DI , a small q typically suffices [17], and compu-
tations (for each Tn and Hi) can be easily parallelised.

(a) p(HI = Hi|y1:k); subplot shows full track with few timestamps.

(b) Mean and standard deviation of estimated p(T |y1:k).

Fig. 1: Inference results as user walks back to car from a building.

Fig. 2: Future state estimates at tk = 32s (bold cross is tk). Shading
shows the covariance of the posterior p(xt∗ |y1:k), centered on its
mean, at two future time instants t∗ = 44s (top row) and t∗ = 88s
(bottom row) each marked by a blue asterisk. Left and right columns
are for classical filtering and bridging distributions, respectively.

Fig. 3: Destination inference for the nine vessel tracks. Thick green
lines shows the track portion when the true endpoint is inferred.

5. FINAL REMARKS

The introduced “simple” intent prediction framework leads to
low-complexity, Kalman-filtering-type, inference algorithms
with minimal parameter training requirements. It can be com-
bined with other data-driven approaches, such as those that
focus on learning patterns-of-life, within the flexible Bayesian
formulation. The proposed framework has several extensions,
e.g. using nonlinear and/or non-Gaussian models, interact-
ing multiple models to represent varying motion behaviours,
a group tracking formulation and others. This paper serves
the purpose of motivating such future work.
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