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ABSTRACT
In this paper, we propose a deep learning based approach

to design online power control policies for large EH networks,
which are often intractable stochastic control problems. In the
proposed approach, for a given EH network, the optimal on-
line power control rule is learned by training a deep neural
network (DNN), using the solution of offline policy design
problem. Under the proposed scheme, in a given time slot,
the transmit power is obtained by feeding the current system
state to the trained DNN. Our results illustrate that the DNN
based online power control scheme outperforms a Markov de-
cision process based policy. In general, the proposed deep
learning based approach can be used to find solutions to large
intractable stochastic control problems.

Index Terms— Deep learning, energy harvesting, power
control, stochastic control

1. INTRODUCTION

An energy harvesting (EH) node operates using the energy
harvested from the environmental sources [1], e.g., solar,
wind, and etc. This promises to enable autonomous operation
of the next generation wireless networks such as the internet-
of-things (IoT) [2]. An EH node (EHN) operates under the
energy neutrality constraint which requires that at any point in
time the total energy consumed by the node, up to that point
in time, can not exceed the total amount of energy harvested
by the node until that point. Moreover, at a given instant, an
EHN with a finite size battery can only store a limited amount
of energy. These constraints and the random nature of the EH
process make the design of energy management policies a
challenging issue in the design of EH systems.

Depending on the nature of information available about
the EH process and wireless channel, the design of energy
management policies can be broadly classified in two cate-
gories: offline and online methods. In the scenario when the
information about the energy arrivals and the channel state is
only causally available [3, 4], the energy management poli-
cies are termed as online policies. The online policy design
problems are stochastic control problems which for an EH
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network with a large number of nodes suffer from the “curse-
of-dimensionality”. In contrast, when the problem horizon
is finite and the perfect information about the energy arrivals
and the channel state is available in a non-causal fashion, over
the entire horizon of the problem, the policies can be designed
in an offline manner [5, 6]. In particular, for a given set of
conditions, the offline policy design problem can be posed as
a static optimization problem which can be solved efficiently.
An offline policy, obtained by solving the static optimization
problem corresponding to a given set of realizations of the EH
process and the channel, may be suboptimal or even infeasible
when used in an online setting. Although designed under dif-
ferent assumptions, both the online and offline policies map
a given system state to a feasible output power. Hence, an
optimal offline policy also captures the information about the
mapping between the system state and the optimal transmit
power. Thus, intuitively, by using the offline solution to learn
this mapping, it could be possible to design online policies
with good performance, for large EH networks.

In this work, we illustrate the above idea by developing an
online power control policy to maximize the time-averaged
throughput of a fading multiple access channel (MAC) with
EH transmitters. In [6], the authors designed the throughput
optimal offline power control policies for the fading MAC
with EH transmitters. On the other hand, the optimal on-
line policies are known only in very restrictive scenarios,
such as with binary transmit power levels when the nodes
are equipped with infinite size battery [7] or with unit-sized
battery [8] [9]. Furthermore, as the size of the state space
grows exponentially with the number of nodes, even obtain-
ing a dynamic programming based numerical solution is not
feasible. Hence, the design of optimal online policies for
general K-user fading MAC where the EHNs are equipped
with finite-size battery has remained elusive.

We design the online policies for fading EH MAC by
learning the mapping between the system state and the opti-
mal transmit power using a deep neural network (DNN) [10].
The DNNs, due to its good generalization capabilities, are in-
creasingly being used to improve the performance of wireless
communication systems, e.g., for multiple access [11], power
control [12] and even for end-to-end reconstruction [13] of the
data. In our approach, the DNN is trained using the data ob-
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tained from offline solutions. The trained DNN is then used
to obtain the transmit power vector in an online setting, by
feeding the system state as the input. Our results illustrate
that the online power control derived using the proposed ap-
proach achieves very good performance. The proposed DNN
based approach to solve a stochastic control problem with a
large state space can be generalized to other domains as well.
We note that, in contrast to existing deep learning based ap-
proaches [14,15] to solve stochastic control problems our ap-
proach differs in the following manner:

• The method in [14] is useful only for finite horizon
problems and the controller needs to train a DNN for
each stage of the problem. On the other hand, our ap-
proach is simpler as it needs to train the DNN only once
and is applicable to infinite horizon problems.

• Compared to [15], instead of learning the Q-function,
the proposed approach directly learns the policy.

In the next section, we describe the system model which is
used for illustrating our approach.

2. SYSTEM MODEL

We consider a time-slotted EH network where K EHNs
transmit their data over a fading channel to an AP con-
nected to the mains. The set of transmitters is denoted by
K , {1, 2, . . . ,K}. Without loss of generality, each slot is
assumed to be of unit length and the nodes are synchronized
at the slot-level. Each transmission lasts for the entire slot
duration [16, 17]. In the nth slot, the complex fading channel
gain between the kth transmitter and the AP is denoted by
gkn. In a given slot, channel between any transmitter and the
AP remains constant for the entire slot and changes at the
end of the slot. Across the slots, the channel gain between
a transmitter and the AP, gkn, is independent and identically
distributed (i.i.d.).

In a slot, the nodes harvest energy according to a general
harvesting process with joint probability distribution function
denoted by fE1,E2,...,EK (e1, e2, . . . , eK), where the random
variable Ek denotes the amount of energy harvested by the
kth transmitter and ek denotes a realization of Ek. The energy
harvested by the nodes is independent across the slots. At
each node, the harvested energy is stored in a perfectly effi-
cient, finite capacity battery, and at the kth node the size of the
battery is denoted by Bk

max. Only causal information about
the EH process and channel states between the AP and all the
nodes is available. In order to illustrate the main idea, we as-
sume that the battery state of all the nodes and the channel
states between all the transmitters and the AP is available in
a centralized fashion [6,18]. However, as described in Sec. 3,
the proposed online policies can be easily adapted for a dis-
tributed implementation.

Let pkn ≤ Pmax denote the amount of energy used by the
kth transmitter in the nth slot, where Pmax denotes the max-
imum transmit energy which is determined by the RF front

end. Further, Pn , {pkn}Kk=1 denotes the set of energy levels
used, in the nth slot, by all the transmitters. The battery at the
kth node evolves as

Bk
n+1 = min{[Bk

n + ekn − pkn]
+, Bk

max}, (1)

where 1 ≤ k ≤ K, and [x]+ , max{0, x}. In the above, Bk
n

and ekn denote the battery level and the energy harvested by
the kth node, at the start of the nth slot. An upper bound on
the successful transmission rate of the EH MAC over N slots
is given by [6]

T (P) =
N∑

n=1

log

(
1 +

∑
k∈K

pkng
k
n

)
, (2)

where P , {Pn|1 ≤ n ≤ N}. Note that, in (2) for simplic-
ity, and without loss of generality, we set the power spectral
density of the AWGN at the receiver as unity.

Our goal in this paper is to find an online energy manage-
ment policy to maximize the time-averaged throughput. The
optimization problem can be expressed as follows

max
{P}

lim inf
N→∞

1

N
T (P), (3a)

s.t. 0 ≤ pkn ≤ min{Bk
n, Pmax}, (3b)

for all n and 1 ≤ k ≤ K. The constraint (3b) captures the
fact that the maximum energy a node can use in the nth slot
is limited to the minimum of the amount of energy available
in the battery, Bk

n, and the maximum allowed transmit energy
Pmax. Note that, since the information about the random en-
ergy arrivals and the channel is only causally available and
for each node the battery evolves in a Markovian fashion, ac-
cording to (1), the optimization problem in (3) is essentially
a stochastic control problem which can be formulated as a
Markov decision process (MDP) by discretization of the state
space. However, for an EH network with large number of
nodes or with large battery size at each node, it suffers from
the “curse-of-dimensionality”. In the following, we present
a deep learning based approach to efficiently solve (3), when
only the causal information is available.

3. DNN BASED ONLINE ENERGY MANAGEMENT

To describe our DNN based approach to solve (3) we define
some additional notations and mathematically describe online
and offline policy in context of the problem (3).

3.1. Notations

For the kth node, let Ek
m:n , {ekm, ekm+1, . . . , e

k
n}, B

k
m:n ,

{Bk
m, Bk

m+1, . . . , B
k
n}, and Gk

m:n , {gkm, gkm+1, . . . , g
k
n} de-

note the vectors containing the values of energy harvested,
battery state, and the channel state, respectively, in the slots
from m to n. Further, history up to the start of the slot n is de-

noted by the tuple Hn ,
{
(Ek

1:n−1,B
k
1:n−1,G

k
1:n−1)

}K

k=1
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Fig. 1. DNN based online energy management policy. In the
nth slot, the DNN maps the system state (En,Bn,Gn) to a
feasible transmit energy vector.

and Hn ∈ Hn, where Hn is the set of all possible histo-
ries up to slot n. Also, in the nth slot, the current state of
the system is described by the tuple Sn , {En,Bn,Gn},
where En , (e1n, e

2
n, . . . , e

K
n ), Bn , (B1

n, B
2
n, . . . , B

K
n )

and Gn , (g1n, g
2
n, . . . , g

K
n ) are the vectors containing the

values of energy harvested, battery state and the channel state,
respectively, in the nth slot, for all the nodes. Further, Sn ∈ S
where S denotes the set of all possible states.

3.2. Online and Offline Policies

In the nth slot, an online decision rule fn : Hn × S → P̂
maps the history, Hn, and the current state of the system,
Sn, to a feasible transmit energy vector, P̂ ∈ RK

+ , which
contains the transmit energies for all the nodes. Mathemati-
cally, an online policy F is the collection of decision rules,
i.e., F , {f1, f2 . . .}. In contrast, for offline policy design
problem the horizon N is finite and, for all the slots, the
information about the amount of the energy harvested and
the channel state is available non-causally, i.e., {Ek

1:N}Kk=1,
{Gk

1:N}Kk=1 are known before the start of the operation.
Hence, the stochastic control problem in (3) reduces to a
static optimization problem whose objective and constraints
are deterministic convex functions in the optimization vari-
ables pnk . Hence, in the offline scenario, (3) reduces to a
convex optimization problem which can be solved efficiently
using the iterative algorithm presented in [6], with complexity
equal to O

(
KN2

)
.

3.3. DNN based Online Policy

To develop the DNN based online energy management pol-
icy, we first note that, due to finite size of the state and action
spaces of the problem, the optimal policy for the problem
(3) is a Markov deterministic policy [19, Thm. 8.4.7], i.e.,
F , {f, f . . .} where f : S → P̂ . Hence, the optimal online
energy management policy can be obtained by finding a deci-
sion rule which maps the current state of the system Sn to an
optimal transmit energy vector for problem (3). Furthermore,
for a finite horizon problem, an offline policy also represents
a mapping from the current state to a feasible transmit en-
ergy vector, i.e., the optimal offline policy maps a (E,B,G)

tuple to P̂∗. Since a DNN is a universal function approxi-
mator [10], provided it contains a sufficient number of neu-
rons, we propose to use a DNN to learn the optimal decision
rule, by using the solution of the offline policy design prob-
lem to train a DNN. In a given slot, using the proposed online
scheme, the optimal transmit energy vector can be obtained
by feeding the current state of the system as the input to the
trained DNN. Our approach is illustrated in Fig. 1. Next, we
briefly describe the architecture of the DNN and the proce-
dure used for training the DNN.

3.4. DNN Architecture and Training

We adopt a feedforward neural network [10] with fully-
connected layers, whose input layer contains 3K neurons,
one corresponding to each input. A 3K-length vector, con-
taining the system state, is fed to DNN as input which is then
processed by h+1 layers (h hidden layers and an output layer)
to output a K-length vector of transmit energies. The number
of processing units, usually termed as neurons, at the jth layer,
where 1 ≤ j ≤ h+2, is denoted by Nj . Note that, N1 = 3K
and Nh+2 = K. The output of the nth neuron of the jth layer
is computed as Ij(n) = Fj,n

(
W T

j,nIj−1 + bj,n

)
, where

Ij−1 denotes the output of the (j − 1)th layer, which is fed
as input to the jth layer. Also, W j,n ∈ RNj−1 , bj,n ∈ R, and
Fj,n denote the weights, bias, and the nonlinear activation
function, respectively, for the nth neuron of the jth layer.

The DNN can learn the optimal mapping between the sys-
tem state and the transmit energy vector, by appropriately
adjusting the weights and biases of the neurons in the net-
work. The weights W = {{W j,n}

Nj

n=1}
h+2
j=1 and biases b =

{{bj,n}
Nj

n=1}
h+2
j=1 of the neurons of a DNN can be tuned by

minimizing a loss function over a training set which is a set of
data points for which the optimal mapping is already known.
In particular, the training process minimizes the average loss,
over the entire training set, which is defined as

Lav(W , b) =
1

Ndata

Ndata∑
`=1

L
(
P̂∗, Ih+2(W , b)

)
, (4)

where L(·) denotes a loss function which is a metric of dis-
tance between the desired output and the output of the DNN,
and Ndata denotes the number of data points in the training
set. The training proceeds by iteratively minimizing the loss
in (4), using the gradient based methods over the training data
set. The details related to the loss function, training method,
and the batch size used in this work are presented in Sec. 4.

Note that, the training data is generated by solving multi-
ple instantiations of the offline problem, each corresponding
to a different realization of {Ek

1:N ,Gk
1:N}Kk=1. The train-

ing data contains the tuples of the form {(E,B,G) ,P },
where (E,B,G) and P represent the input to the DNN
and the desired output, respectively. We note that, once the
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Table 1. Performance of the DNN based policy for an EH
MAC with K = 5 users and v = 3.5. Performance of the
offline policy corresponds to 100%.

Mean

(m)

Offline Policy

(RPS in nats)

DNN policy

(RPS in nats)

DNN policy

(Percentage )

4 3.4907 3.1498 90.23%

5 3.6564 3.3107 90.54%

6 3.7877 3.4410 90.84%

7 3.8922 3.5102 90.18%

8 3.9740 3.6146 90.95%

9 4.0407 3.5676 88.29%

DNN is trained, the proposed policy entails a low computa-
tional cost to compute the transmit powers, i.e., it requires∑h+2

j=1 NjNj−1 multiplication. Furthermore, the proposed
policy can be easily implemented in a distributed fashion
by broadcasting the result of centralized training process
(optimal weights and biases) to all the nodes.

4. SIMULATION RESULTS

We consider an EH MAC with K = 5 EH transmitters. The
channel between each EHN and the AP is i.i.d. Rayleigh
faded with average channel gain equal to unity. Each EHN
harvests energy according to a nonnegative truncated Gaus-
sian distribution with mean m and variance v, independently
of the other nodes. The size of the battery at each transmitter
is Bmax = 20, and the maximum amount of energy allowed
to be used for transmission in a slot is Pmax = 15. Note that,
the unit of energy is 10−2 J. The metric used to analyze the
performance is the total rate obtained per slot (RPS).

We use a DNN with an input and output layer contain-
ing 3K and K neurons, respectively. It consists of 30 hid-
den layers, with first hidden layer containing 30K neurons.
Each subsequent odd indexed hidden layer contains the same
number of neurons as the previous even indexed layer, i.e.,
Nj = Nj−1 for j ∈ {3, . . . , 31}. For each even indexed
hidden layer the number of neurons is decreased by 2K, i.e.,
Nj = Nj−1−2K for j ∈ {4, . . . , 30}. We note that, the input
layer has the index 1, and the first hidden layer and the out-
put layer having index 2 and 32, respectively. The activation
function used is Leaky rectified linear unit (ReLu). To train
the network we use the mean-square error as the loss func-
tion. Training data is generated by solving 104 instantiations
of the offline problem with the horizon length N = 20. Thus,
the training dataset contains 2× 105 datapoints, out of which
40000 datapoints are used for validation. The performance
is evaluated by computing the RPS over 106 slots. For these
106 slots, instantiations of the EH process and the channel are
generated independently of the training data.

Table 1 shows the performance of the proposed DNN

Table 2. Performance of the DNN based online policy for a
point-to-point link with m = 10.

Variance

(v)

Offline Policy

(RPS in nats)

DNN Policy

(Percentage )

MDP Policy

(Percentage )

1 2.0434 98.41% 83.32%

2 2.0375 98.56% 83.60%

3 2.0372 98.38% 83.32%

4 2.0347 95.85% 83.37%

5 2.0310 97.72% 83.29%

6 2.0284 98.22% 83.21%

based policy. The last column of the table presents the RPS
as the percentage of the throughput achieved by the offline
policy. It can be observed that the proposed policy achieves
roughly 90% of the throughput obtained by the offline pol-
icy. We note that, since an offline policy is designed using
non-causal information, the proposed policy can not achieve
the throughput obtained by the optimal offline policy. Note
that, the MDP formulation of this problem is computation-
ally intractable, due to state space of the size of order 1012,
even with the channel gains quantized to just 8 levels. Due
to lack of space, we omit the comparison of the proposed
approach against the deep Q-learning based policies. It will
be presented in the longer version of the paper.

Results in Table 2 compares the performance of the pro-
posed DNN based policy against MDP, for point-to-point
links, i.e., K = 1, with mean m = 10. The proposed
DNN based policy achieves approximately 98 % of the time-
averaged throughput achieved by the offline policy. It is
interesting to note that the proposed policies outperform the
online policies designed using the MDP which achieves only
approximately 84 % of the throughput achieved by the offline
policy. Theoretically, an online policy designed using MDP
achieves the optimal performance. However, the performance
of MDP policy degrades due to quantization of the state and
action spaces. On the other hand, the proposed DNN based
policy operates with continuous state and action spaces.

5. CONCLUSIONS

In this paper, we proposed a noble deep learning based
method to solve the stochastic control problems, using the
solution of the offline problem for training the DNN. The
offline problems are static optimization problems which,
compared to the original stochastic control problem, often
can be solved efficiently. We illustrated our approach by
developing an online power control policy to maximize the
throughput of an EH based fading MAC. We trained the DNN
using the training data generated by solving the offline power
control problem. It is observed through simulations that the
proposed approach provides a very good performance.
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