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ABSTRACT
This paper studies the problem of max-min fairness power al-
location in distributed small cell networks operated under the
same frequency bandwidth. We introduce a calibrated learn-
ing enhanced time division multiple access scheme to opti-
mize the transmit power decisions at the small base stations
(SBSs) and achieve max-min user fairness in the long run.
Provided that the SBSs are autonomous decision makers, the
aim of the proposed algorithm is to allow SBSs to gradually
improve their forecast of the possible transmit power levels
of the other SBSs and react with the best response based on
the predicted results at individual time slots. Simulation re-
sults validate that in terms of achieving max-min signal-to-
interference-plus-noise ratio, the proposed distributed design
outperforms two benchmark schemes and achieves a similar
performance as compared to the optimal centralized design.

Index Terms— small cell networks, distributed power al-
location, online learning, calibration

1. INTRODUCTION

Cellular networks have experienced an explosive increase in
the number of mobile subscribers in the last decade, and the
global mobile data traffic is predicted to reach 48.3 Exabytes
per month by 2021 [1]. Hyper-dense deployment of small cell
base stations (SBSs) underlaying the existing macrocell cel-
lular networks is considered a promising technique to meet
the requirements of the mounting growth of mobile data traf-
fic [2]. However, such network densification in cellular net-
works with limited licensed spectrum will result in increas-
ing intercell interference (ICI). Cloud radio access networks
that allow centralized radio resource coordination across mul-
tiple cells, have been widely investigated in the literature for
ICI management and resource allocation [3]. However, the
requirement of high-capacity fronthaul links to support the
immense traffic demands in such a centralized implementa-
tion necessitates the distributed operation of SBSs that can be
organized and coordinated autonomously. Conventional liter-
ature either models the distributed resource allocation prob-
lem as a noncooperative game and solves it via iterative pro-

cesses [4–7], or uses iterative inter-base station (BS) fron-
thaul information exchange such as the subgradient method
in [8–10] and the alternating direction method of multipliers
technique in [10, 11] to schedule transmit power and manage
ICI among BSs. These designs, nevertheless, assume that the
channel remains invariant until the iterations are completed
or the convergence is achieved, which is not very practical.
Furthermore, some types of noncooperative games, e.g., the
Stackelberg game in [6], require the players to alternately
make moves, which may not be suitable for the practical sce-
nario where BSs perform simultaneous transmissions.

This paper focuses on the design of an intelligent dis-
tributed power allocation mechanism in small cell networks
operated under the same spectrum that maximizes the aver-
age minimum signal-to-interference-plus-noise ratio (SINR)
in the long run. A calibrated learning based distributed multi-
armed bandit (MAB) approach is developed for the individ-
ual SBSs to learn during the operation, i.e., find a trade-off
between exploring the environment and exploiting the cur-
rent knowledge of the environment. In contrast to the exist-
ing distributed power allocation designs that iteratively ex-
change side information among SBSs within a channel co-
herence time, this paper considers a more realistic scenario,
where SBSs serve their own users simultaneously and only
exchange the past power information at the end of each time
instance. The proposed algorithm is designed for the SBSs to
progressively and distributively calibrate their anticipations of
the possible transmit power levels of the other SBSs, and react
with the best response to the predicted results.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

This paper considers a distributed downlink small cell net-
work consists of Nb SBSs, indexed by Lb = {1, · · · , Nb},
that simultaneously serve their own Nu users, indexed by
Lu = {1, · · · , Nu}, over a shared spectrum. Let the time
horizon T be divided into discrete time slots and indexed as
T = {1, · · · , T}. Each time slot corresponds to a channel
coherence time and the channel is assumed to vary across
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time slots but remains constant within each time slot. The
time-division multiple access technology is employed to en-
sure user fairness via serving the users within the same small
cell one after the other in their respective time slots. Each
individual SBS is fully synchronized and has to make its de-
cision, i.e., selects a transmit power level from an index set
A = {1, · · · , A} of discrete transmit power levels, indepen-
dently, to serve its scheduled user during time slot t, t ∈ T .
Furthermore, the SBSs can communicate with each other via
capacity-constrained inter-SBS communication links at the
end of each time slot.

2.1. Downlink Transmission Model

Let the channel gain between SBS b, b ∈ Lb and its user u,
u ∈ Lu at time slot t, t ∈ T , be denoted as Ψ

[t]
bu. Also let

P
[t]
bu ∈ A be the transmit power from SBS b to user u. The

SINR for user u served by SBS b at time slot t is given by

SINR[t]
bu =

P
[t]
bu |Ψ

[t]
bu|2∑

b′∈Lb,b′ 6=b
P

[t]
b′u′ |Ψ

[t]
b′u|2 + σ2

u

, (1)

where the numerator of (1) denotes the desired signal for the
user, the terms in the denominator of (1) denote, respectively,
the ICI caused by other SBSs and the additive white Gaussian
noise with noise variance of σ2

u.

2.2. Problem Formulation

Due to the fact that the individual SBSs are autonomous de-
cision makers in the considered scenario, it is evident that the
presence of interference, coupling with the decision of the in-
dividual SBSs, raises a conflict: the individual SBSs tries to
transmit at its maximum possible transmit power to improve
its utility, while the ICI incurred by doing so may degrade the
performance of other SBSs. Thus, we formulate the power
allocation for distributed small cell networks as a long-term
max-min user fairness problem to optimize the power alloca-
tion decisions of the SBSs, as

max
{P [t]
bu}

{
lim
T→∞

1

T

T∑
t=1

min
b

(SINR[t]
bu)

}
. (2)

Since the system is operated in a distributed manner and
the SBSs have to make decisions simultaneously, the key
issue to be addressed for the individual SBSs to ensure the
system-level performance is the acquisition or the reliable
prediction of its opponents’ decisions. In the next section, the
ε-calibrated forecaster [12] will be introduced for each SBS to
gradually improve its accuracy in predicting the opponents’
decisions. It will be followed by the proposed calibrated
learning algorithm that allows the individual SBSs to select
the most appropriate transmit power level based on the out-
put of the forecaster, such that the minimum SINR can be
maximized in the long run.

3. CALIBRATED LEARNING ALGORITHM

3.1. ε-Calibrated Forecaster for the Opponents’ Actions

Having a calibrated forecasting scheme not only allows the
players to act with the best response to the predicted future
events, but also enables multiple players to converge to a rea-
sonable joint play in some cases [12]. The definition of ε-
calibration can be explained as follows. Let us consider a
forecaster b playing a game against the opponent b′, where
each SBS has a finite set A of possible outcomes. Define
P = {p1, . . . ,pNε} as the Nε set of candidate probability
values over A. Suppose that at each time slot t, t ∈ T , the
forecaster b outputs its forecasts of the opponent b′, given by
one of the candidate probability values over each SBS’s out-
come, i.e., ptbb′ = {ptbb′,1, . . . , ptbb′,A} ∈ P for SBS b at time
t, whilst the opponent b′ simultaneously selects an outcome
atb′ ∈ A. Let us denote by K = {1, . . . , Nε} the indexes of
{p1, . . . ,pNε} and p1, . . . ,pNε the center of Nε balls with
radius of ε, respectively. Given ε > 0, the sequence of fore-
casts is called ε-calibrated if

lim sup
T→∞

Nε∑
k=1

‖ 1

T

T∑
t=1

1{kt
bb′=k}

(pk − δat
b′

)‖ ≤ ε, (3)

where δat
b′
∈ {0, 1} is the dirac distribution on the opponent

b′’s outcome atb′ ∈ A, and 1kt
bb′

is an indicator function that
returns one if the prediction of the probability of power lev-
els for a particular SBS at time t is pk and zero otherwise.
Following the similar procedure as in [12], let us define the
target set C as a subset of the ε-ball around (0, . . . ,0) for the
calibration norm, as

C = {x = (x1, . . . ,xNε) ∈ RANε :

Nε∑
i=1

‖xk‖ ≤ ε,xk ∈ RA}

(4)
and let us define the vector-valued pay-off function as

m(k, a) = (0, . . . ,0,pk−δa,0, . . . ,0), k ∈ K, a ∈ A, (5)

where m(k, a) ∈ RANε contains one non-zero vector element
of RA located at the k-th position given by the difference be-
tween the predicted probability value pk and the dirac distri-
bution of the opponent’s true action δa, andNε−1 zero vector
elements elsewhere. According to Blackwell’s approachabil-
ity theorem [13], the condition of ε-calibration in (3) is equiv-
alent to the following statement: the closed convex set C is
approachable by the vector-valued regrets, i.e.,

mT
bb′ =

1

T

T∑
t=1

m(ktbb′ , a
t
b′) =

1

T
(

T∑
t=1

1{kt
bb′=1}(p1 − δat

b′
)

, . . . ,

T∑
t=1

1{kt
bb′=Nε}

(pNε − δat
b′

)),

(6)
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and there exists a prediction distribution ϕtbb′ over P , such
that for ∀a ∈ A,

(mt−1
bb′ −

∏
C

(mt−1
bb′ )) · (m(ϕtbb′ , a)−

∏
C

(mt−1
bb′ )) ≤ 0, (7)

where · denotes the inner product and
∏
C(mt−1

bb′ ) is the pro-
jection of mt−1

bb′ in l2-norm onto C. Recall from Section 2
that we denote by A = {1, · · · , A} the finite index set of
discrete transmit power levels or actions of SBSs with cardi-
nality of A in the considered scenario. Each SBS b acts as
a forecaster, the other SBSs {b′}b′ 6=b,b′∈Lb correspond to the
opponents and the actions of the opponents can be regarded
as the other SBSs transmitting to their respective users at cer-
tain discrete power levels. The procedure of the ε-calibrated
forecaster at each SBS b to predict each of the other SBSs’
actions is summarized in Algorithm 1 below.

Algorithm 1 ε-calibrated forecaster at SBS b
1: Input: current time-slot t, εt, discount factor β, actual

arm chosen by the opponent at time t− 1, i.e., {at−1b′ }.
2: Update the average vector-valued regrets up to time t− 1

as per (6), as mt−1
bb′ = 1

t−1
∑t−1
t′=1 m(kt

′

bb′ , a
t′

b′)β
(t−t′).

3: Calculate the projection
∏
C(mt−1

bb′ ), by obtaining the op-
timal solution x∗ ∈ RANε of the following problem

minx ||x−mt−1
bb′ ||22

s.t. xk ≥ 0, 1 ≤ k ≤ ANε and
∑ANε
k=1 xk ≤ εt.

4: Optimize the prediction distributions {ϕtbb′}, i.e.,
argmin
ϕt
bb′

max
a∈A

(mt−1
bb′ −

∏
C

(mt−1
bb′ )) ·m(ϕtbb′ , a),

based on the multiplicative weights algorithm [14], such
that for ∀a ∈ A, (7) is satisfied.

5: Output the forecast result {ptbb′} according to the opti-
mal prediction distribution {ϕtbb′∗} over {p1, . . . ,pNε}.

3.2. Calibrated Learning Algorithm for Power Allocation

In order to maximize the long-term system-level performance
over all SBSs, the impact of the uncertain factors such as
wireless channel conditions need to be learned over time.
Here we propose a distributed bandit approach to account
for the impact and to avoid local optimum of the ε-calibrated
forecaster. Let us consider an MAB problem that models a
system of A arms whose expected rewards are i.i.d. over time
with unknown means. The objective of an MAB problem
is to maximize the accumulated reward over time through
a trade-off between exploring the environment to find prof-
itable actions, while exploiting current knowledge to make
the empirically best decisions among a set of actions [15].
The max-min SINR problem investigated in this paper can
be regarded as a distributed MAB problem, where each SBS
acts as an agent and a forecaster, A transmit power levels cor-
respond to A actions or arms, and the instantaneous reward

of individual power levels chosen by SBS b can be defined
as SINR[t]

bu. The details of the proposed calibrated learning

Algorithm 2 Distributed Calibrated Learning Main Algo-
rithm at SBS b

1: Initialize: t = 1; total no. of time slots T , εt, γt=1 = 1.
2: While t 6= T do
3: with probability of γt: Exploration Stage

-The SBS transmits to its user at a random power level.
4: with probability of 1− γt: Exploitation Stage :

-Receive the information of actual arm chosen by the
opponents, i.e., {at−1b′ }, and the average mean rewards,
i.e., µ̄[t−1]

b′b = {µ̄b′b,1, . . . , µ̄b′b,A}, b′ 6= b, b′ ∈ Lb of
previous time slot from the other SBSs.
-Receive predictions of other SBSs for the current time

slot, i.e., {ptbb′ = {ptbb′,a′}a′∈A}, from Algorithm 1.
-Calculate the estimated mean reward as

µ̂
[t]
b = {

∑A
a′=1 p

t
bb′,a′SINR[t]

bu(a)}a∈A.
-Transmit at a power level associated with the highest

max-min reward, as ktbb′ = argmax
atb∈A

min(µ̂
[t]
b , {µ̄

[t−1]
b′b }).

5: Observe the associated true reward SINR[t]
bu.

6: Average µ̄[t]
bb′ over past time slots, as

µ̄
[t]
bb′ =

∑t−1

t′=1
µ̄

[t′]
bb′ β

(t−t′)+1kt
bb′

SINR[t]
bu

t ,∀b′ 6= b, b′ ∈ Lb.
7: increment the time slot count t = t+ 1.
8: end while

algorithm to be executed at the individual SBSs are described
in Algorithm 2. Note that the only information an SBS needs
to share with other SBSs at the end of time slot t for the pro-
posed design is its actual chosen arm, i.e., atb, and a vector of
its average mean reward, i.e., µ̄[t]

bb′ , which is a light overhead
as compared to that of the conventional iterative distributed
power allocation designs [8–11]. Furthermore, the practical
scenario with a large number of SBSs and users does not
affect the scalability of the proposed algorithm, as it may
only decelerate the convergence speed and/or increase the
computational burden.

4. SIMULATION RESULTS

Consider a distributed small cell network consisting 7 SBSs,
Nu = 2 users are randomly scheduled in each small cell.
Here we only consider the topNb = 2 neighboring interferers
among all the SBSs to account for the worst-case ICI. Each
SBS can transmit at {1, 2}W discrete transmit power levels.

The channel gain Ψ
[t]
bu is scaled by GaLbuσ2

F e
−0.5 (σs ln 10)2

100

[8], where Lbu = 125.2 + 36.3log10(d) denotes the path loss
model over a distance of d km between SBS b and its user u,
and the antenna gain isGa = 15 dBi. The candidate probabil-
ity values are set to be {p1, . . . ,pNε} = {(0, 1), . . . , (1, 0)}
with Nε = 21 over A = 2 actions. The performance of all
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power allocation designs is evaluated versus frames, where
each frame contains 100 time slots and the performance at
each frame is averaged over the current frame and the one be-
fore. In order to demonstrate the advantages of our proposed
power allocation design, a random power allocation design
that randomly selects transmit power level from A at indi-
vidual time slots as well as a max power allocation design
that always chooses the maximum transmit power level, have
been set as the benchmark schemes. Furthermore, a central-
ized optimal max-min SINR design that exhaustively searches
for the optimal transmit power levels for SBSs at individual
time slots, is employed as a performance upper bound.
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Fig. 1. Min SINR of various power allocation designs for (a)
rapid channel variations, (b) near-static channel conditions.

Fig. 1 compares the average minimum SINR for vari-
ous power allocation designs for highly uncertain wireless
channel variations, i.e., Fig. 1(a), and near-static channel
conditions, i.e., Fig. 1(b), respectively. As can be seen from
Fig. 1, the proposed design progressively converges to the
centralized design for the case of static environment and has
a slightly degraded performance when the channel varies
rapidly, whilst the performance gap between the proposed
design and the optimal centralized design is narrowed with
increasing number of frames. In addition, the proposed design
outperforms two benchmark schemes in both cases. This is
due to the fact that in the benchmark schemes, the individual

Table 1. Reward table for SBSs at the final time slot
SBS1\ SBS2 Arm1 Arm2
Arm1 2.4286/ 9.6637 1.2146/ 20.3274
Arm2 4.8572/ 6.8347 2.4291/ 13.6694

SBS autonomously selects its transmit power level without
taking into account the impact it may have on its counterparts
as well as the variations in wireless channel conditions.

Table I provides the possible SINR values that could be
achieved for various combinations of arms chosen by the two
SBSs at the final time slot. One may observe from the ta-
ble that the maximization of the minimum SINR of 4.8572
is achieved when SBS1 and SBS2 transmit, respectively, at
power level 2 and power level 1. Fig. 2 presents the individ-
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Fig. 2. Prediction distribution ϕtbb′ of Nε candidate probabil-
ity values at final time slot.

ual SBS’s prediction distribution, i.e.,ϕtbb′ , of candidate prob-
ability values {p1, . . . ,pNε} over its opponent’s arm chosen
at the final time slot. It is obvious that SBS1 and SBS2 are
highly likely to be expected by their opponents to choose arm
2 and arm 1, respectively. This conclusion is in agreement
with Table I, where SBS1 choosing arm 2 whilst SBS2 se-
lecting arm 1 leads to the maximization of minimum SINR.

5. CONCLUSION

This paper proposes a calibrated learning based power al-
location algorithm in distributed small cell networks, which
adapts to the actions of the SBSs and achieves max-min user
fairness in the long run. The proposed design allows the SBSs
to gradually improve their prediction on the opponents’ be-
haviour and react with the best response based on the forecast
results at individual time slots. Simulation results validate
that the proposed distributed design outperforms two bench-
mark schemes and closely follows the optimal centralized de-
sign with limited amount of side information exchange.
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