
JOINT TRANSACTION TRANSMISSION AND CHANNEL SELECTION IN COGNITIVE RADIO
BASED BLOCKCHAIN NETWORKS: A DEEP REINFORCEMENT LEARNING APPROACH

Nguyen Cong Luong1, Tran The Anh1, Huynh Thi Thanh Binh2, Dusit Niyato1, Dong In Kim3, and Ying-Chang Liang4

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2School of Information and Communication Technology, Hanoi University of Science and Technology, Vietnam

3School of Information and Communication Engineering, Sungkyunkwan University, Korea
4Center for Intelligent Networking and Communications, University of Electronic Science and Technology of China, China

ABSTRACT

To ensure that the data aggregation, data storage, and data

processing are all performed in a decentralized but trusted

manner, we propose to use the blockchain with the mining

pool to support IoT services based on cognitive radio net-

works. As such, the secondary user can send its sensing data,

i.e., transactions, to the mining pools. After being verified by

miners, the transactions are added to the blocks. However, un-

der the dynamics of the primary channel and the uncertainty

of the mempool state of the mining pool, it is challenging for

the secondary user to determine an optimal transaction trans-

mission policy. In this paper, we propose to use the deep rein-

forcement learning algorithm to derive an optimal transaction

transmission policy for the secondary user. Specifically, we

adopt a Double Deep-Q Network (DDQN) that allows the sec-

ondary user to learn the optimal policy. The simulation results

clearly show that the proposed deep reinforcement learning

algorithm outperforms the conventional Q-learning scheme in

terms of reward and learning speed.

Index Terms— Cognitive radio, blockchain, IoT, channel

access, deep reinforcement learning

1. INTRODUCTION

Cognitive radio has been adopted to support IoT data trans-

mission from IoT devices to a centralized server or the

cloud [1]. Specifically, the IoT devices act as the Secondary

Users (SUs) accessing idle spectrum of the Primary Users

(PUs), improving the IoT performance and enhancing PUs’

spectrum utilization. Generally, the IoT data to support IoT

services and applications involves multiple stakeholders in-

cluding devices owners, service providers, and users. Hence,

the traditional approach of maintaining the IoT data by a sin-

gle entity, e.g., an IoT provider, has shown many limitations.

Firstly, it lacks transparency and traceability, i.e., the data can

be modified arbitrarily by unknown persons and applications.

Secondly, security is limited as it has to rely on a single entity

which can be an easy target of cyber attacks. Thirdly, effi-

ciency, speed, and reliability are low because of a bottleneck

and a single point of failure. This calls for a novel solution of

the data management.

To overcome the limitations, we propose to use the

blockchain [2] for collecting, storing, and processing the

sensing data from the SUs. The first reason is that the

blockchain is considered to be a decentralized database,

i.e., a ledger [3] in which transactions, i.e., the sensing data,

are recorded and processed by a number of nodes over the

whole network instead of a centralized authority. The sec-

ond reason is that the blockchain enhances the security and

guarantees the data integrity since the transactions must be

agreed and verified by the nodes before they are recorded

[4]. Therefore, the blockchain can be combined with the cog-

nitive radio to constitute a new framework called cognitive

radio based blockchain network. The framework allows the

SUs to use idle channels from the PUs to transmit their sens-

ing data to the blockchain. The SU transmission is likely to

be “localized” because of inherent Device-to-Device (D2D)

transmission, which is well matched to P2P connection based

blockchain network. Then, the SU’s sensing data is recorded

and processed in the blockchain in a decentralized but trusted

manner.

However, under the dynamics of the primary channel and

the uncertainty of the blockchain system, it may be challeng-

ing for each SU to make optimal decisions, i.e., transmit deci-

sion and channel selection, that maximizes the number of suc-

cessful transaction transmissions. To address the challenge,

we propose to use the Deep Q-Learning (DQL) technique pre-

sented in [5], i.e., the combination of Deep Neural Networks

(DNNs) and the Q-Learning (QL) [6], that enables the SU

to learn the optimal policy without requiring the prior infor-

mation from the network environment. We first formulate an

optimization problem for the SU that maximizes the number

of successful transaction transmissions while minimizing the

channel cost and transaction fee. Then, we adopt the Double

Deep Q-Network (DDQN) to implement the DQL algorithm.

Simulation results show that the proposed DQL outperforms

the QL in terms of the performance and learning speed. To the

best of our knowledge, this is the first work that studies the ap-

plication of DQL [5] in the cognitive radio based blockchain

network.

The rest of this paper is organized as follows. Section 2 de-

8409978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

scribes the system model. Section 3 presents the problem for-

mulation. Section 4 presents the DQL algorithm for the joint

transaction transmission and channel selection in the cogni-

tive radio based blockchain network. Section 5 shows the per-

formance evaluation results. Section 6 summarizes the paper.

2. SYSTEM MODEL

SU

Channels

Base station

Transaction transmit

Blockchain mining pool

Mempool
Miner i

Miner

Blockchain

Trans.

adding

Fig. 1. A cognitive radio based blockchain network.

We consider a cognitive radio based blockchain network

as shown in Fig. 1. The network consists of one SU, i.e., the

IoT device, a base station, and the blockchain mining pool to

support the IoT services. The base station can be regarded as

a secondary receiver to establish a D2D connection with the

SU. At each time slot t, the SU senses and selects one of K

channels from multiple PUs to transmit a transaction to the

mining pool through a base station. Here, the channel can be

good, i.e., idle, or bad, i.e., busy, due to the transmission of the

corresponding PU. The transaction contains sensing data of

the SU and a transaction fee CT that the SU is willing to pay

the mining pool. After being successfully verified by miners

in the mining pool, the transaction is stored in a mempool of

one miner, say miner i, as an unconfirmed transaction. Note

that the mempool is able to store Dmax unconfirmed transac-

tions from the SUs in the network. The miner then adds the

certain number of unconfirmed transactions with high trans-

action fees into a new block. Thus, the probability that the

transaction of the SU is successfully added to the block at the

current time slot is high if the transaction is assigned with a

high fee [7]. The blockchain system is specifically vulnerable

to the double-spending attack [8] in which transactions in a

block can be maliciously modified. We assume that the trans-

action of the SU is attacked with a probability pa.

3. PROBLEM FORMULATION

We formulate a stochastic optimization problem for the joint

transaction transmission and channel selection of the SU. The

problem is defined by a tuple < S,A,P,R >, where S , A,

and R are the state space, action space, and the reward func-

tion of the SU, respectively. P is the state transition probabil-

ity function with Ps,s′(a) being the probability that the cur-

rent state s ∈ S transits to the next state s′ ∈ S when action

a ∈ A is executed.

3.1. Action Space

Let K denote the number of channels that the SU can choose

to transmit its transactions. Then, the action space of the SU

is defined as A =
{

0, 1, . . . ,K
}

, where a = 0 means that the

SU chooses not to transmit its transaction, and a = k means

that the SU chooses channel k to transmit the transaction.

3.2. State Space

The state space is the combination of the channel state, de-

noted by Sc, and the mempool state, denoted by Sm.

First, we define Sc. Each channel k can be in one of two

different states, i.e., good or bad, i.e., the channel is idle or

busy because of the transmission by the PU, respectively. The

channels can be considered to be correlated, and thus all the

channel states can be described as a 2K-state Markov chain

[9] with a transition matrix P. At the beginning of each time

slot, although the SU cannot observe the states of all the chan-

nels, it can infer the states from its past channel selections,

i.e., actions, and the corresponding observations. Sc is thus

defined as

Sc = {[a(t), w(t)], . . . , [a(t− L+ 1), w(t− L+ 1)]}, (1)

where w(t − l) is the observation of the channel selection at

time slot t− l. w(t− l) = 1 if the channel is good, and w(t−
l) = 0 if the channel is bad. L is the number of observations.

Second, we define mempool state Sm. Sm refers to

the current number of transactions and the correspond-

ing transaction fees in the mempool. Sm is defined as

Sm = {(m1,∆C1), . . . , (mM ,∆CM)}, where ∆Ci rep-

resents transaction fee range i, and mi is the current number

of transactions that have transaction fees within the range of

∆Ci. The transition of the mempool state from time slot t to

t + 1 depends on (i) the number of transactions arriving in

the mempool, (ii) the corresponding transaction fees, and (iii)

the number of transactions that the miner adds a new block at

time slot t. Here, we assume that the number of transactions

arriving in the mempool and the transaction fee follow the

uniform distributions U [Tmin, Tmax] and U [Cmin

T , Cmax

T],
respectively. The number of transactions added to the new

block also follows the uniform distribution U [Tmin

add , Tmax

add].

The state space of the SU at time slot t is thus defined as

S = Sc × Sm, where × is the Cartesian product.

3.3. Reward Function

The reward function R of the SU is composed of three com-

ponents, i.e., the positive utility Rsuccess, the channel access

cost Cc , and the transaction fee CT . The SU receives the util-

ity of Rsuccess > 0 if the transaction transmission is success-

ful and the utility of Rsuccess = 0 otherwise. The transaction

transmission is considered to be “successful” if it is added

to the new block at the current time slot and is not attacked.

Here, we introduce the double-spending attack in which the

8410

transaction is attacked with a probability pa given by [10]:

pa =

1−
∑n

m=0

(

m+ n− 1
m

)

(pnqm − pmqn) if q < p,

1 if q ≥ p,

where n and m are respectively the numbers of blocks that

are found by the honest network and the attacker, p and q,

p + q = 1, are the probabilities that a block is found by the

honest network and the attacker, respectively.

The objective is to maximize the number of successful

transaction transmissions and minimize the channel cost and

the transaction fee. Thus, the reward function of the SU is

defined as R(s, a) = Rsuccess − Cc − CT .

To obtain the mapping from a state s ∈ S to an action a ∈
A such that the long-term accumulated reward is maximized,

the QL algorithm can be used. The algorithm finds the optimal

policy defined as π∗ : S → A by estimating Q-values of state-

action pairs, i.e., Q(s, a). Q(s, a) is the expected discounted

sum of future rewards obtained by taking an action a at state s

following the optimal policy. The Q-values are updated based

on the experience of the SU as follows:

Qnew(s, a) =(1− λ)Q(s, a) (2)

+ λ

(

r(s, a) + γmax
a′∈A

Q(s′, a′)

)

,

where λ is the learning rate, and γ is the discount factor.

After the values Q(s, a) are learned, the SU can determine

its optimal action from any state to maximize the long-term

accumulated reward. However, the QL suffers from large state

and action spaces of the network. Thus, we propose to use a

DQL to find the optimal policy for the SU.

4. DEEP Q-LEARNING ALGORITHM

DQL uses a DNN instead of the look-up table to represent all

the states and actions of the SU. The input of the DNN is one

of the states of the SU, and the output includes Q-values of

all possible actions. To enable the SU to map its current state

to an optimal action, the DNN needs to be trained. Train-

ing the DNN is to update its weights θ by using experiences

e =< s, a, r, s′ > of the SU to minimize a loss function.

Here, the SU can execute action a using the ǫ-greedy policy to

balance its exploration and exploitation. The loss function at

the current iteration is given by L = E
[

(y(t)−Q(s, a;θ))2
]

,

where y is the target value. Typically, y is defined as y =
r + γmaxa′∈A Q(s′, a′;θold), where θ

old are the weights of

the DNN at the last iteration. However, such definition results

in over-optimistic value estimates since the max operator in

y uses the same Q-values both to select and to evaluate an ac-

tion. To decouple the action selection from the action evalua-

tion, we propose to use the DDQN [11] which is composed of

one online DNN with weights θonline and one target DNN with

weights θ
target. The online DNN updates its weights θ

online

at each iteration. The target DNN resets its weights θ
target to

θ
online in every N target iterations and keeps weights θtarget fixed

at other iterations. The online DNN updates its weights θ to

minimize the loss function defined as

LDDQN = E
[

(yDDQN −Q(s, a;θonline))2
]

, (3)

where the target value yDDQN is defined as

yDDQN = r+γQ
(

s′, argmax
a′∈A

Qi(s
′, a′;θonline);θtarget

)

. (4)

(4) shows that the selection of an action is due to the cur-

rent weights, i.e., θonline, while the weights θtarget of the target

DNN are used to evaluate fairly the value of the action.

Algorithm 1 DQL algorithm [5].

Input: A; N target; Nb; M
Output: Optimal policy π∗

1: Initialize: θonline; θtarget

2: for episode i = {1, . . . , N} do

3: for iteration t = {1, . . . , T} do

4: Execute action a according to ǫ− greedy policy

5: Receive reward rt
6: Store experience (s, a, rt, s′) in M
7: Sample Nb experiences (s, a, rj , s

′) from M
8: if if an episode terminates at iteration j + 1 then

9: Set y
DDQN
j = rj

10: else

11: Determine amax = argmaxa′∈A Q(s′, a′;θonline)

12: Set y
DDQN
j = rj + γQ

(

s′, amax;θtarget
)

13: end if

14: Perform a gradient descent step on (yDDQN
j −Q(s, a;θonline))2

to update θ
online

15: Reset θtarget = θ
online in every N target iterations

16: end for

17: end for

Algorithm 1 shows the DQL algorithm which uses the

DDQN to find the optimal policy for the SU. Accordingly,

based on the experience e, the online DNN and target DNN

compute the optimal value Q(s′, a′;θonline). Then, the target

value yDDQN and the loss function LDDQN is calculated ac-

cording to (4) and (3), respectively. The value of LDDQN is

used to update weights θ of the online DNN. To ensure the

stability of the learning, the experience replay memory M is

used to store experience e, and then a mini-batch of Nb expe-

riences are taken at each iteration to train the DNNs.

5. PERFORMANCE EVALUATION

In this section, we present experimental results to evaluate the

performance of the proposed DQL algorithm. For compari-

son, the QL algorithm [6] is used as a baseline scheme. Ma-

jor simulation parameters are listed in Table 1. The simulation

results for the performance comparison between the proposed

DQL scheme and the QL scheme are shown in Figs. 2, 3, 4,

and 5 depending on the varied parameters.

8411

Table 1. Simulation parameters

Parameters Value

Number of channels (K) 4
Probability of switching good channel (pc) 0.9
Maximum number of transactions in the mempool (Dmax) 50
Channel cost (Cc) 0.2
Transaction fee (CT) ∼ U [0; 1]
Probability that a block is found by the attacker (q) 0.02
Discount rate (γ) 0.9

ǫ-greedy 0.9 → 0

Episode

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ew

ar
d

0

100

200

300

400

500

600

QL

DQL

QL

DQL

Fig. 2. DQL scheme and QL scheme comparison.

Fig. 2 illustrates the rewards obtained by the DQL and

QL schemes. To enable the QL scheme to be run in our com-

putation environment, we reduce the state space by setting

the maximum number of transactions in the mempool to be

10. As seen, the DQL scheme converges to the reward much

higher than that of the QL scheme. Specifically, the rewards

obtained by the DQL and QL schemes are 550 and 390, re-

spectively. Moreover, the convergence speed of the DQL

scheme is faster than that of the QL scheme. The DQL scheme

converges at around 3000 episodes while the QL scheme con-

verges at 7000 episodes.

Episode

0 1000 2000 3000 4000 5000

R
ew

ar
d

100

200

300

400

500

600

700

K=2
K=3
K=4K =4

K =3

K =2

Fig. 3. Reward of DQL as the number of channels K is varied.

The convergence speed of the DQL scheme is likely main-

tained as the maximum number of transactions in the mem-

pool increases to 50 as shown in Fig. 3. In this case, the state

space becomes too large for the QL scheme to converge in the

reasonable time, and hence it is not shown in the figure. This

confirms the scalability of the DQL. Note that as the number

of channels K is varied, the state space changes, and the DQL

scheme has different convergence speeds. However, the DQL

scheme always reaches to the same reward because it already

learns the optimal policy to obtain the maximum reward.

Episode

0 1000 2000 3000 4000 5000

R
ew

ar
d

-100

0

100

200

300

400

500

600

700

q = 0.02

q = 0.10

q = 0.20

q = 0.30

q =0.02

q =0.10

q =0.20

q =0.30

Fig. 4. Reward of DQL as the probability q is varied.

The reward obtained by the DQL scheme decreases as the

probability that a block is found by the attacker q increases as

shown in Fig. 4. The reason is that as q increases, the num-

ber of successfully transmitted transactions decreases. Simi-

larly, the reward that the SU receives decreases as the trans-

action fee CT and the channel cost Cc increase as illustrated

in Fig. 5.

Channel cost

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ew

ar
d

200

250

300

350

400

450

500

550

600

C
T

~[0;1]

C
T

~[0;2]

C
T

~[0;3]

Fig. 5. Reward of DQL versus the channel access cost Cc.

6. CONCLUSIONS

In this paper, we have presented the DQL algorithm for the

joint transaction transmission and channel selection problem

in the cognitive radio based blockchain network. Specifically,

we have developed a DQL algorithm using DDQN to solve

the problem. The simulation results show that the proposed

DQL scheme outperforms the QL scheme in terms of reward

and learning speed. This implies that the DQL enables the SU

to achieve the higher number of successful transaction trans-

missions while paying lower cost.

7. ACKNOWLEDGEMENT

This work was supported in part by WASP/NTU M4082187

(4080), Singapore MOE Tier 1 under Grant 2017-T1-002-007

RG122/17, MOE Tier 2 under Grant MOE2014-T2-2-015

ARC4/15, Singapore NRF2015-NRF-ISF001-2277, and Sin-

gapore EMA Energy Resilience under Grant NRF2017EWT-

EP003-041, and in part by the National Research Foundation

of Korea (NRF) Grant funded by the Korean Government

under Grant 2017R1A2B2003953.

8412

8. REFERENCES

[1] A. A. Khan, M. H. Rehmani, and A. Rachedi,

“Cognitive-radio-based internet of things: Applications,

architectures, spectrum related functionalities, and fu-

ture research directions,” IEEE wireless communica-

tions, vol. 24, no. 3, pp. 17–25, June 2017.

[2] O. Schrijvers, J. Bonneau, D. Boneh, and T. Rough-

garden, “Incentive compatibility of bitcoin mining pool

reward functions,” in International Conference on Fi-

nancial Cryptography and Data Security. Barbados:

Springer, May 2016, pp. 477–498.

[3] R. Neisse, G. Steri, and I. Nai-Fovino, “A blockchain-

based approach for data accountability and provenance

tracking,” in Proceedings of the 12th International Con-

ference on Availability, Reliability and Security. Reg-

gio Calabria, Italy: ACM, August 2017, pp. 93–98.

[4] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu,

“Blockchain based data integrity service framework for

iot data,” in IEEE International Conference on Web Ser-

vices (ICWS), Honolulu, HI, June 2017, pp. 468–475.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-

ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.

Fidjeland, G. Ostrovski et al., “Human-level control

through deep reinforcement learning,” Nature, vol. 518,

no. 7540, pp. 529–533, 2015.

[6] C. J. Watkins and P. Dayan, “Q-learning,” Machine

learning, vol. 8, no. 3-4, pp. 279–292, May 1992.

[7] (2018, Sept.) Explaining bitcoin transaction fees. [On-

line]. Available: https://support.blockchain.com/hc/en-

us/articles/

[8] G. O. Karame, E. Androulaki, and S. Capkun, “Double-

spending fast payments in bitcoin,” in ACM conference

on Computer and communications security, Raleigh,

NC, October 2012, pp. 906–917.

[9] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari,

“Deep reinforcement learning for dynamic multichan-

nel access in wireless networks,” IEEE Transactions

on Cognitive Communications and Networking, vol. 4,

no. 2, pp. 257–265, Jun. 2018.

[10] M. Rosenfeld, “Analysis of hashrate-based double

spending,” arXiv preprint arXiv:1402.2009, 2014.

[11] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforce-

ment learning with double q-learning,” in Proceedings

of the Thirtieth AAAI Conference on Artificial Intelli-

gence. Phoenix, AZ, February 2016, pp. 2094–2100.

8413

		2019-03-18T11:18:25-0500
	Preflight Ticket Signature

