
DYNAMIC JOINT PHY-MAC WAVEFORM DESIGN FOR IOT CONNECTIVITY

Konstantinos Tountas, George Sklivanitis, and Dimitris A. Pados

I-SENSE and Dept. of Computer and Electrical Eng. & Computer Science,
Florida Atlantic University, Boca Raton, FL, 33431

E-mail: {ktountas2017, gsklivanitis, dpados}@fau.edu

ABSTRACT

We envision dense network deployments of Internet-of-
Things (IoT) connected devices that report data to a com-
mon base station (BS). The devices utilize repeats of a basic
shaping pulse occupying the entire continuum of the device-
accessible spectrum. We propose an optimal algorithm to
adaptively design sparse waveforms with well-placed en-
ergy that maximize the signal-to-interference-plus-noise ratio
(SINR) at the output of the maximum-SINR linear filter at
the BS. Additionally, we propose a computationally efficient
suboptimal waveform design algorithm for the same problem.
Simulation studies show that the proposed waveform designs
attain superior pre-detection SINR performance than con-
ventional binary, quaternary, and sparse-binary/quaternary
waveform designs, thus offering a promising PHY-MAC
approach to maintain wireless connectivity in overloaded
network setups.

Index Terms— Waveform design, channelization, all-
spectrum, IoT, interference-avoidance

1. INTRODUCTION

Internet-of-Things (IoT) platforms will connect a huge num-
ber of machines and humans that produce, gather, share, and
forward data. Drastically increasing data traffic from wire-
lessly connected “things” will significantly impact the design
and implementation of next-generation wireless communica-
tion systems. Particularly, efficient spectrum and energy uti-
lization in dense IoT network deployments entail joint opti-
mization of communication parameters at the physical and
medium-access-control (MAC) layers.

Interference avoidance via waveform design has attracted
considerable attention toward the development of spectrally
and energy efficient cognitive networks [1–4]. Particularly, a
finite sequence of repeated square-root-raised cosine (SRRC)
pulses that span the entire continuum of the device-accessible
spectrum is optimized [1–4] to maximize the signal-to-
interference-plus-noise ratio (SINR) at the output of the
maximum-SINR receiver. Recent work in [5] considers bi-
nary antipodal and quaternary alphabets for the repeating
sequence of pulses and evaluates the pre-detection SINR per-
formance of max-SINR optimized digital waveforms in the

presence of multiple access interference.
Recently proposed MAC protocol designs for IoT con-

nectivity consider contention-based channel access. Work
in [6] proposes a hybrid MAC scheme, where time-division
multiple-access (TDMA) is proposed for voice packet trans-
missions that guarantee a packet loss-rate bound, while trun-
cated CSMA/CA (T-CSMA/CA) is used by the devices
to access the wireless channel. In [7] a hybrid slotted-
CSMA/CA-TDMA protocol is proposed for dividing a log-
ical frame into a contention-based slotted-CSMA/CA pe-
riod and a contention-free slotted-TDMA period. On the
other hand, joint PHY-MAC layer approaches for overloaded
code-division multiple-access (CDMA) systems consider the
design of non-orthogonal code waveforms to enable low com-
plexity detection of multiple users communicating simultane-
ously over a common wireless channel. Recent work in [8]
proposes both optimal and suboptimal computationally effi-
cient algorithms for the adaptive design of sparse binary code
waveforms. A statistical-mechanics framework for sparse
CDMA in [9] demonstrates that small sparsity values offer
considerable spectral-efficiency performance improvements.

In this paper, we envision dense network deployments of
IoT connected devices that report data to a common base sta-
tion (BS). We propose a joint PHY-MAC approach that lever-
ages the design of interference avoiding waveforms. More
specifically, IoT devices dynamically optimize a repeating se-
quence of basic shaping pulses that maximize the SINR at the
output of the max-SINR receiver, and for the first time we
consider adaptive sparse waveform designs with well-placed
energy. In other words, the alphabet of the symbols of the pro-
posed waveform designs does not have uniform energy distri-
bution, and is optimized as the waveforms are designed. As a
result, some symbols may have greater energy than others to
account for multipath and/or intersymbol interference effects.
The BS is responsible for dynamically sensing the spectrum
environment, and updating the waveform designs of existing
or new devices, to ensure network connectivity.

The rest of the paper is organized as follows. Section 2
presents the system model. Section 3 describes the waveform
design problem. Section 4 evaluates the performance of the
proposed waveform design in terms of pre-detection SINR,
while a few concluding remarks are drawn in Section 5.
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2. SYSTEM MODEL

We consider K single-antenna IoT devices transmitting in-
formation symbols to a single-antenna BS over a single-input
single-output (SISO) flat fading channel with N resolvable
paths. Each symbol bk [m] ,m = 1, 2, . . . , k = 1, 2, . . . ,K
is drawn from a unit energy, complex constellation A, and is
modulated by an all-spectrum digital waveform sk (t) of du-
ration T . The transmitted signal of the k-th device is written
as

xk (t) ,
∞∑
m=0

√
Pkbk [m] sk (t−mT ) ej(2πfct+φk) (1)

where Pk > 0 denotes the transmitted energy per symbol,
φk is the carrier phase, and fc is the carrier frequency of the
m-th symbol for the k-th IoT device. The all-spectrum dig-
ital waveform sk (t) comprises L repeats of a basic shaping
pulse (e.g. SRRC), each occupying the entire continuum of
the device-accessible bandwidth, and is given by

sk (t) ,
L−1∑
l=0

dk[l]gTc
(t− lTc) (2)

where gTc
(·) is a SRRC shaping pulse of duration Tc, so that

T = LTc, and dk is a unit-norm real/complex-valued [10] or
binary/quaternary [1–5] code sequence of length L.

The transmitted signals propagate over Rayleigh fading
multipath channels with N resolvable paths and experience
additive Gaussian noise at the receiver. Multipath fading is
modeled by a liner tapped-delay line with taps that are spaced
at Tc intervals and are weighted by independent fading co-
efficients (i.e. Rayleigh distributed amplitude and uniformly
distributed phase).

Without loss of generality, the carrier down-converted,
pulse-matched filtered, and sampled received signal vector
with respect to the k-th IoT user of interest in the presence
of K − 1 asynchronous single antenna users is written as

r [m] ,
√
PkHksk bk[m]+yk ∈ CLN , m = 1, 2, . . . (3)

where LN = L+N−1 is the multipath-extended symbol du-
ration LNTc, and Hk ∈ CLN×L denotes the multipath chan-
nel matrix for the k-th IoT device defined as

Hk ,



hk,1 0 · · · 0
hk,2 hk,1 · · · 0

...
... · · ·

...
hk,N hk,N−1 · · · 0
0 hk,N · · · hk,1
...

... · · ·
...

0 0 · · · hk,N


(4)

where hk,n, n = 1, 2, . . . , N , is considered an independent
zero-mean complex Gaussian random variable that models

the n-th complex baseband channel coefficient for the k-th
IoT device. With respect to the k-th IoT device, the total dis-
turbance at the BS introduced by the rest of theK−1 devices
is defined as

yk =

K∑
i=1
i 6=k

√
PiHisi bi[m] + n ∈ CLN , m = 1, 2, . . . (5)

where n ∈ CLN models zero-mean additive white Gaussian
noise with autocorrelation matrix Rn , E

{
nnH

}
= σ2ILN

and the autocorrelation matrix of the total disturbance is de-
fined as Rk , E

{
yky

H
k

}
∈ CLN×LN .

Assuming perfect knowledge of the total disturbance au-
tocorrelation matrix at the BS, the linear filter wk ∈ CL×1
that exhibits maximum output SINR at the receiver can
be found to be any scaled version of wmax−SINR (sk) =
cR−1k Hksk, c > 0 for any waveform sk with ‖sk‖ = 1.
The post-filtering SINR at the output of the maximum-SINR
receiver filter is then written as

SINR (sk) ,
E
{∣∣wH

max−SINR (sk)
(√
PkHkskbk[m]

)∣∣2}
E
{∣∣wH

max−SINR (sk)yk
∣∣2}

= Pks
H
k HH

k R−1k Hksk. (6)

Our goal at the BS is to find a waveform sk that maximizes
pre-detection SINR (sk) for the k-th user of interest. We
define Wk , HH

k R−1k Hk. Assuming that sk ∈ CL, since
Wk � 0, the complex-valued waveform that maximizes the
post-filtering SINR is given by

sk,C−OPT = argmax
s∈CL,‖s‖=1

Pks
HWks = q1 (7)

where q1,q2, . . . ,qL denote the eigenvectors of Wk with
corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL > 0. In
this work, our objective is to find a waveform sk takes val-
ues from a finite-element complex alphabet with well-placed
energy per element to maximize pre-detection SINR.

3. PROPOSED SPARSE VARIABLE ALPHABET
WAVEFORM DESIGN

3.1. Problem Formulation

We begin the problem formulation by noting that due to chip-
level disturbance correlations, there may exist chip transmis-
sion intervals wherein the k-th device should avoid to trans-
mit or utilize less energy. As a result, transmission energy
should be adaptively distributed to each transmission interval
to maintain wireless connectivity. In this work, the waveform
sk of the k-th IoT device can take values from the finite al-
phabet {0,±{α, β} ± {α, β} j}, where α, β ∈ R+, where
parameters α and β control the inter-chip energy. The con-
stellation of the proposed waveform is depicted in Fig. 1. The
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Fig. 1. Proposed waveform constellation.

max-SINR waveform design problem is therefore written as

s̃k , argmax
s∈{0,±{α,β}±{α,β}j}L

‖s‖=1

Pk s
HWks. (8)

In the rest of our algorithmic developments we assume spar-
sity up to L/2, i.e. the IoT device may not transmit/remain
silent up to half of the total available chip transmission inter-
vals and utilize the rest of intervals for transmission.

3.2. Optimal Algorithm

The waveform design problem in (8) is a combinatorial op-
timization problem and its optimal solution can be acquired
by exhaustively searching over the waveform feasibility set.
More specifically, we first rewrite the optimization problem
in (8) as

max
c∈{α,β}

max
s∈{0,±c±cj}L

c2‖s‖0=1

sHWks (9)

= max
c∈{α,β}

max
V ∈[L]

max
s∈{0,±c±cj}L,
‖s‖0=V,‖s‖=1

sHWks (10)

where [L] , {L/2, . . . , L} is the allowed waveform sparsity,
and ‖·‖0 returns the number of the non-zero elements of the
input vector. The solution to (10) can be found by two nested
exhaustive searches. For every V ∈ [L], we solve the inner
maximization problem in (10) to obtain

s̃k,V , argmax
s∈{0,±c±cj}L,
‖s‖0=V,‖s‖=1

sHWks. (11)

We search exhaustively for all
(
L
V

)
4V sequences in the fea-

sibility set of (11). For each sequence, we create all the pos-
sible combinations for c ∈ {α, β}, which results to a total of(
L
V

)
16V sequences. Given that ‖s̃k,V ‖ = 1 we then search

for α, β ∈ R+ parameters that maximize pre-detection SINR.

Algorithm 1 Suboptimal Iterative Algorithm

Input: Wk = PkH
H
k R−1k Hk, c ∈ R+

Qk ← EVD(Wk)
for V ∈ {L/2, . . . , L} do

a← arbitrary inCL, with ‖a‖ = 1; m← 0
while not converged do

s← c
{
sgn
[
IV
(
Re
{
WH

k a
})]

+jsgn
[
IV
(
Im
{
QH
k a
})]}

a← Qks
‖Qks‖

m′ ← sHk Wks
if m′ −m ≤ threshold then

sk,V ← s
m← m′

end if
end while

end for
s̃ITk,V ← max

s∈{sk,L/2,...,sk,L}
sHWks

Finally, we obtain s̃Exh
k by solving

s̃Exh
k = argmax

s∈{s̃k,1,s̃k,2,...,s̃k,L/2}
Pk s

HHH
k R−1k Hks. (12)

3.3. Suboptimal Algorithm

The complexity of the optimal algorithm presented above is
prohibitive for practical applications where L is large. In this
section, we propose to separate the waveform design and en-
ergy distribution problems, and present a suboptimal iterative
algorithm for solving the waveform design problem in a com-
putationally efficient way.

We focus on (11) and start by decomposing Wk by means
of eigenvalue decomposition as Wk = QH

k Qk for some
Qk ∈ CL×L. Then, by the Cauchy-Schwarz inequality [11]

max
s∈{0,±c±cj}L,
‖s‖0=V,‖s‖=1

sHWks

= max
s∈{0,±c±cj}L,
‖s‖0=V,‖s‖=1

max
a∈CL,
‖a‖=1

sHQka. (13)

For any given s in the feasibility set of the outer maximization
in (13), the inner maximization is achieved for

a =
Qks

‖Qks‖
. (14)

For any given a in the feasibility set of the inner maxi-
mization in (13), the outer maximization is achieved for

sk = c
{
sgn

[
IV
(
Re
{
QH
k a
})]

+jsgn
[
IV
(
Im
{
QH
k a
})]}
(15)

where sgn (·) returns the sign of its arguments (note that
sgn (0) = 0), and IV (·) returns its arguments after setting
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Fig. 2. SINR loss as a function of the number of users (L = 6,
N = 4, SNR1 = 10 dB).

to zero the L − V entries with the lowest absolute values.
For every V ∈ [L], the algorithm initializes at some arbitrary
a
(0)
V ,
∥∥∥a(0)V ∥∥∥ = 1 and produces a sequence of points in the

feasibility set of (11),
{
s
(t)
V

}
, t = 1, 2, . . . . At the t-th step,

t > 0, the algorithm calculates

s
(t)
V = c

{
sgn
[
IV
(
Re
{
WH

k a
})]

+jsgn
[
IV
(
Im
{
QH
k a
})]}

(16)

a
(t)
V =

Qks
(t)
V∥∥∥Qks
(t)
V

∥∥∥ . (17)

After obtaining a convergence point sV the algorithm returns
the approximate solution to (11) by solving

s̃ITk,V = argmax
s∈{sk,L/2,...,sk,L}

sHWks. (18)

Algorithm 1 offers a pseudocode for the proposed subopti-
mal iterative waveform design. After the iterative procedure
produces the best approximation of the sparse waveform, we
search exhaustively for the best combinations of values for
parameters α and β.

4. SIMULATION STUDIES

We consider a star network topology with varying number of
IoT devices that utilize waveforms of length L = 6 to report
data to a BS. We assume that the transmitted signals propagate
over multipath fading channels with N = 4 resolvable paths.
The signal-to-noise ratio (SNR) of the device-of-interest is set
to SNR1 , P1

σ2 = 10 dB, while the SNR of the other devices
SNRk , Pk

σ2 , k = 2, . . . ,K is distributed uniformly between
8dB and 11dB. We evaluate the pre-detection SINR loss of (i)
the proposed suboptimal sparse waveform design with vari-
able amplitude; (ii) the optimal sparse waveform design with
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Fig. 3. SINR loss as a function of waveform updates (L = 6,
N = 4, K = 8).

variable amplitude; (iii) the optimal sparse-quaternary wave-
form; and (iv) the optimal quaternary waveform with nom-
inal alphabet (uniformly distributed energy), with respect to
the optimal, complex waveform given by (7). In both (iii) and
(iv) the waveforms are obtained by exhaustive search over all
possible sequences.

In Fig. 2, we plot the SINR loss as a function of the num-
ber of devices K that varies from 8 to 12. We observe that
the proposed optimal and suboptimal waveform designs of-
fer superior pre-detection SINR performance compared to the
nominal quaternary and sparse-quaternary waveform designs.
Additionally, the proposed waveform designs achieve post-
filtering SINR performance that is closer to the SINR perfor-
mance of the complex eigenvector maximizer. Fig. 3 depicts
the SINR loss as a function of the number of updates per-
formed iteratively by the base-station optimizing sequentially
the waveforms of K = 8 devices. The SNR of the IoT de-
vices is uniformly distributed between 8 dB and 11 dB. We
observe that the proposed waveform designs offer superior
pre-detection SINR performance than the nominal quaternary
and sparse-quaternary waveforms.

5. CONCLUSIONS

We present max-SINR sparse waveforms with carefully
placed energy to efficiently utilize spectrum and energy re-
sources in future IoT dense network deployments. We pro-
pose an optimal waveform design algorithm and a suboptimal
computationally efficient algorithm for practical applications
that require the implementation of waveforms with long code
lengths. Simulation studies demonstrate that the proposed
waveform designs outperform (in pre-detection SINR) con-
ventional non-sparse and sparse waveform designs based on
nominal alphabet designs. Finally, optimal sparse waveform
designs with variable alphabets can achieve pre-detection
SINR performance that is closer to the SINR performance of
the max-SINR optimal complex-valued waveform.
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