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ABSTRACT

Internet of Things (IoT) applications for Smart Cities, such as sys-
tems for traffic control and pollution monitoring, increasingly rely
on trustworthy and secure data analytics. Proper countermeasures
are needed to ensure that IoT applications function reliably under
security threats. This paper studies secure analytics and resilient in-
ference for IoT in the context of recursive parameter estimation. A
team of devices makes noisy measurements of an unknown param-
eter, and an attacker manipulates the measurement data of a subset
of the devices. We present a resilient recursive estimation algorithm
that processes the measurement streams to recover the value of the
parameter, even when a subset of the devices fall under attack. The
estimator is guaranteed to be strongly consistent – that is, the esti-
mate converges almost surely to the value of the parameter – as long
as less than half of the devices fall under attack. We illustrate the
performance of the estimator through numerical examples.

Index Terms— Estimation, Security, Internet of Things

1. INTRODUCTION

The growing pervasivness of the Internet of Things (IoT) has in-
troduced numerous applications to improve the functionality and
well-being of smart cities, including traffic control [1], health an-
alytics [2] and pollution monitoring [3]. For example, the Array of
Things project aims to deploy a network of sensors throughout the
city of Chicago to observe weather conditions, pedestrian and ve-
hicular traffic, and air quality [4]; the Clean Air Nairobi initiative
examines the efficacy of using low cost sensors to measure air pol-
lution in Nairobi [5]; and reference [3] develops a mobile sensor
network using UAVs for monitoring air quality in Beijing. IoT sys-
tems also incorporate personal devices to complement static sensing
infrastructure (such as the sensing nodes in the Array of Things). A
crowdsensing air quality monitoring system, for example, uses data
from individuals’ smart phones and wearable gadgets to improve the
spatial and temporal resolution of static pollutant monitoring sensor
networks [6].

These applications require the processing of data streams from a
collection of sensors or smart devices to recover unknown informa-
tion: in pollution monitoring, for example, we need to process each
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sensor’s data stream to construct a pollutant concentration heatmap
over a city. Due to their limited computing capacity, energy-
consumption constraints, and spatial distribution (particularly in
Smart City applications), IoT devices are vulnerable to adversarial
attack [7, 8]. This paper focuses on data integrity attacks, where an
adversary pathologically manipulates the measurement streams of a
subset of the devices. For example, in crowdsensing, an adversarial
user may attack the system by intentionally transmitting falsified
data from his or her personal device. To ensure the reliability of
IoT applications, which depend on trustworthy data and analytics,
it is necessary to develop countermeasures against these intrusions.
In this paper, we study secure and resilient analytics for IoT in the
context of security countermeasures for parameter estimation.

We consider a team of sensors or devices measuring an unknown
parameter. The devices relay their measurement streams to a fusion
center (FC), which processes the data to estimate the unknown pa-
rameter. In context of [3], for example, we may have a team of
drones monitoring air pollutant concentrations in a neighborhood.
The drones transmit their sensor data to the cloud, which then esti-
mates an air quality heatmap. All of the sensors are affected by noise,
and a fraction of the sensors are under adversarial attack. When a
sensor is under attack, it may produce any arbitrary measurement
value (as determined by the adversary). This paper presents a re-
silient recursive estimation algorithm: the estimator processes the
measurement streams on-line and is guaranteed to be strongly con-
sistent (i.e., as more measurement samples are processed, the esti-
mate converges almost surely to the true value of the parameter) as
long as less than half of the sensors are under attack.

Existing reactive countermeasures for parameter estimation fo-
cus on explicity detecting security intrusions and identifying which
sensors are under attack. Once an attack has been identified, the FC
may take corrective actions in computing its estimate. Reference [9]
proposes a metric to characterize the quality of measurements col-
lected from IoT devices. Instead of just characterizing the quality of
data, this paper, unlike [9], presents an algorithm to resilently pro-
cess at that may be compromised by an adversary. Our previous
work [10] presents a fully distributed algorithm to explicitly detect
adversarial devices. The algorithm in [10] raises alarms when it de-
tects adversarial devices whose behavior would prevent the remain-
ing nonadversarial devices from correctly estimating the unknown
parameter. In contrast, this paper presents a decentralized estimation
algorithm that correctly estimates the unknown parameter without
explicitly detecting adversarial behavior. References [11] and [12]
propose algorithms to identify compromised sensors (when the ad-
versary is restricted to use certain probabilistic attack strategies) and
use data from the remaining uncompromised sensors for inference.
For general attack strategies, i.e., attackers who are not restricted to
use probabilistic strategies, attack identification becomes a combi-
natorial problem [13, 14].

8394978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



Unlike [11] and [12], which restrict attackers to follow proba-
bilistic strategies, in this paper, we consider attackers who behave ar-
bitrarily. To avoid the computational burden of attack identification,
the algorithm in this paper does not need to identify the compro-
mised sensors. Instead, the estimator processes the measurements
in a way so as to implicitly mitigate the damage from the attack,
without explicitly identifying the attacker’s behavior. Regardless of
how an attack is carried out, the estimator in this paper is guaran-
teed to be strongly consistent as long as less than half of the sensors
are compromised. Our previous work [15, 16] developed an attack-
resilient algorithm for distributed parameter recovery that did not
need to explicitly identify the attack, but these algorithms required
noiseless measurements. In contrast, the estimator presented in this
paper handles measurement noise and attacks simultaneously, which
is challenging because a smart adversary may hide the attack within
the measurement noise.

The rest of this paper is organized as follows. In Section 2, we
provide the sensor measurement and attack models, and we define
the resilient recursive estimation problem. Section 3 presents a re-
silient recursive parameter estimation algorithm that iteratively up-
dates a running estimate based on new measurements available at
each time step. The estimator is strongly consistent, i.e., the esti-
mate converges almost surely to the true value of the parameter, as
long as less than half of the sensors are compromised. In Section 4,
we analyze the estimator’s performance and provide a proof sketch
of its strong consistency. We illustrate the performance of the esti-
mator through numerical examples (based on air quality monitoring)
in Section 5, and we conclude in Section 6.

2. BACKGROUND

Consider a set of N sensors, {1, 2, . . . , N}, where each sensor n
makes a stream of measurements

yn(t) = θ∗ + wn(t) (1)

of an unknown static parameter θ∗ ∈ RM , where wn(t) is measure-
ment noise. We assume that the parameter θ∗ is static. In practice,
we are often interested estimating parameters that change over time,
for example, the air pollutant concentration in an environment or
traffic conditions at a road intersection [7], but these parameters may
be approximated to be static over short time windows. We assume
that the measurement noise wn(t) is independently and identically
distributed (i.i.d.) over time with mean E [wn(t)] = 0 and finite
covariance E [wn(t)wn(t)ᵀ] = Σn and independent across sensors.

A fusion center (FC) collects the raw measurement streams of
each of the sensors. The goal of the FC is to recursively process
the measurement streams and construct a sequence of estimates xt
of the parameter θ∗. A malicious adversary attempts to prevent the
FC from estimating θ∗ by falsifying a subset of the measurement
streams. That is, the adversary attacks a subset of the sensors and
replaces their measurements with arbitrary values yan(t). We model
the effect of the sensor attack as follows

yan(t) = θ∗ + wn(t) + an(t). (2)

Note that, through the appropriate choice of an(t), (2) models all
possible values of yan(t). The adversary may choose yan(t) (or an(t))
arbitrarily; we do not restrict the adversary to follow specific strate-
gies (unlike, e.g., [11, 12], where the attacker must follow certain
probabilitistic strategies).

We may partition the set of all sensors into a set of sensors that
fall under attack,A, and a set that does not fall under attack,N . We

define A as A =
{
n ∈ {1, . . . , N}

∣∣∣∃t, an(t) 6= 0
}
. That is, A is

the set of sensors n that may fall under attack at any time t, but, for
some t, the attacker may choose not to attack (an(t) = 0). The FC
does not know which sensors belong toA and which sensors belong
to N . We assume that the adversary may only attack a strict subset
of the sensors, i.e., there exists 0 ≤ S < N such that |A| < S. For
the measurement model (1), Theorem 3.2 from [14] states that, in
the absence of measurement noise (i.e., wn(t) = 0), it is impossible
to reliably estimate the value of θ∗ if at least half of the sensors are
under attack. In the sequel, we will compare the performance of
our algorithm, which accounts for measurement noise, against this
theoretical bound. Intuitively, it is difficult to simultaneously deal
with measurement noise and attacks, since a smart adversary may be
able to hide the attack in the noise.

3. RESILENT RECURSIVE ESTIMATION

In this section, we describe an iterative algorithm for the FC to
achieve its goal of estimating θ∗ when some of the measurement
streams may be under attack.

3.1. Estimation Algorithm

The FC maintains a running estimate xt and follows a three step
procedure for updating the estimate.

1. Measurement Averaging: For each sensor n, the FC com-
putes a time-averaged measurement

yn(t) =
1

t+ 1
yn(t) +

t

t+ 1
yn(t). (3)

Note that, if n is not under attack (i.e., n ∈ N ), then yn(t) =
θ∗ + wn(t), where wn(t) = 1

t+1

∑t
j=0 wn(j).

2. Gain Calculation: For each sensor n, the FC computes a
scalar gain

Kn(t) = min

(
1,

γt
‖yn(t)− xt‖2

)
, (4)

where γt is a threshold sequence to be defined shortly.

3. Estimate Update: The FC updates the estimate xt as

xt+1 = xt + αt

N∑
n=1

Kn(t) (yn(t)− xt) , (5)

where αt is a weight sequence to be defined shortly.

Following (5), the FC updates its estimate as a weighted sum of
its current estimate and the innovations component of each sensor,
i.e., the difference between the (time-averaged) measurement of each
sensor and the current estimate. The estimate and measurement de-
pendent gain Kn(t) limits the impact of measurements that deviate
too much from the current estimate. It ensures that the `2-norm of
the weighted innovations term Kn(t) (yn(t)− xt) does not exceed
the value of the threshold γt.

The gain Kn(t) provides resilience to the estimation algorithm
by limiting the contribution of measurements that may have been
compromised. Depending on the value of the theshold γt, this pro-
cedure may, however, also limit the contributition of sensors that are
not compromised. For example, if we have γt = 0, then Kn(t) = 0
for all sensors n, and the FC will be unable to estimate θ∗, since it
ignores all measurements. The challenge in designing this resilient
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recursive estimator is to choose Kn(t) and γt to limit the impact
of compromised sensors without overly affecting the contribution of
uncompromised sensors.

We adopt the following procedure for selecting the weight se-
quence αt and threshold sequence γt:

1. Select the sequence αt as αt = a
(t+1)τ1

, where 0 < a ≤ 1
N

and 0 < τ1 ≤ 1.

2. Select the sequence γt as γt = Γ
(t+1)τγ

where Γ > 0 and
0 < τγ <

1
2

.

That is, we choose the sequences αt and γt to decay over time. In-
tuitively, the decaying γt means that we allow less deviation in the
measurements (from the current estimate) over time. We illustrate
the effect of choosing different values of Γ (in γt) in Section 5.

3.2. Estimation Performance

The main result of the paper characterizes the performance of the
recursive estimator under measurement attacks.

Theorem 1. If |A|
N

< 1
2

, then, under update rule (5), the estimate
xt satisfies

P
(

lim
t→∞

(t+ 1)τ0 ‖xt − θ∗‖2 = 0
)

= 1, (6)

for every 0 ≤ τ0 < min
(
τγ ,

1
2
− τγ

)
.

Theorem 1 states that the algorithm can tolerate attacks on up to half
of the sensors and still ensure that xt converges to θ∗ almost surely,
regardless of how they are attacked (i.e., regardless of the specific
values of an(t)). The estimator achieves the theoretical bound on
resilience (in terms of number of tolerable attacked sensors) without
identifying which sensors are compromised and avoids the associ-
ated combinatorial computational expense [13, 14].

4. PERFORMANCE ANALYSIS

We provide a proof sketch of Theorem 1 and omit details due to
space constraints. the proof sketch depends on several intermediate
results, the proofs of which are omitted due to space constraints.

The following lemma from [10] characterizes the behavior of
time-averaged measurement noise.

Lemma 1. Let v1, v2, v3, . . . be i.i.d.random variables with mean
E [vt] = 0 and covariance E [vtv

ᵀ
t ] = Σ. The time averaged mean

vt = 1
t+1

∑t
j=0 vj satisifies

P
(

lim
t→∞

(t+ 1)δ0 ‖vt‖2 = 0
)

= 1, (7)

for every 0 ≤ δ0 < 1
2

.

To analyze the estimator’s performance, we need to characterize
the behavior of the following, scalar, time-varying dynamical sys-
tems:

wt+1 = (1− r1(t))wt + r2(t), (8)

m̂t+1 =

(
1− r1(t)

mt + c3

)
mt + r2(t),

mt+1 = max (|m̂t+1| , |mt|) ,
(9)

with initial conditionsw0,m0 ≥ 0, where r1(t) = c1
(t+1)δ1

, r2(t) =
c2

(t+1)δ2
, c1, c2, c3 > 0, 0 < δ1 ≤ 1, and δ1 < δ2.

Lemma 2. The system in (8) satisfies limt→∞(t+ 1)δ0wt = 0, for
every 0 ≤ δ0 < δ2 − δ1.

Lemma 3. The system in (9) satisfies supt≥0 mt <∞.

The performance of the estimator depends on the gains Kn(t)
for sensors n that are uncompromised. For n ∈ N , Kn(t) depends
on the relationship between the estimation error et = xt − θ∗ and
the threshold γt.

Lemma 4. If |A|
N

< 1
2

, then, for any 0 < εW < 1
2

, almost surely,
there exists T0 ≥ 0 and 0 < W <∞, such that:

1. for all n ∈ {1, 2, . . . , N}, ‖wn(t)‖2 ≤
W

(t+1)
1
2
−εW

, and

2. if for some T1 ≥ T0, we have ‖eT1‖2 ≤ γT1
, then, ‖et‖2 ≤

γt for all t ≥ T1, where

γt =
Γ−W (t+ 1)τγ−

1
2

+εW

(t+ 1)τγ
. (10)

Lemma 4 states that, as long as less than half of the sensors are
under attack, for large enough T1, if the `2 norm of the estimation
error eT1 is upper bounded by γT1

< γT1 , then, almost surely, the
upper bound will hold for all times t ≥ T1.

(Proof Sketch of Theorem 1). We need to show that xt converges to
θ∗ almost surely. By Lemma 4, almost surely, there exists finite T0

such that, if at any time T1 ≥ T0, ‖xT1 − θ∗‖2 ≤ γT1
, then, for all

t ≥ T1, ‖xt − θ∗‖ ≤ γt. We examine the evolution of et = xt−θ∗
along sample paths ω ∈ Ω for which Lemma 4 holds (such a set of
sample paths has measure 1). For a sample path ω, if there exists
T1 ≥ T0 such that ‖eT!,ω‖2 ≤ γT1,ω

≤ γT1 , then, we have

lim
t→∞

(t+ 1)τ0 ‖et,ω‖2 ≤ lim
t→∞

(t+ 1)τ0γt = 0, (11)

for every 0 ≤ τ0 < τγ .
If no such T1 exists, it means that, for all t ≥ T0, ‖et,ω‖2 >

γt,ω . Then, defining

Kt,ω =
γt +Wω(t+ 1)−

1
2

+εW

‖et‖2 +Wω(t+ 1)−
1
2

+εW
, (12)

where (t + 1)
1
2
−εW ‖wn(t, ω)‖ ≤ Wω for all n ∈ N , we have

Kn(t, ω) > Kt,ω for all n ∈ N . It can be shown that

‖et+1,ω‖2 ≤ (1− αtκKt,ω) ‖et,ω‖2 +
αtWω

(t+ 1)
1
2
−εW

, (13)

where κ = 1− 2|A|
N

. Note thatKt,ω ≥ γt

(
sup
j∈[0,t]

‖ej‖2 +Wω

)−1

.

Then, from (13), we can show that supj∈[0,t] ‖ej‖2 ≤ mt, where
mt follows

mt+1 =

(
1− αtκγt

mt +Wω

)
mt +

αtWω

(t+ 1)
1
2
−εW

,

mt+1 = max (mt+1,mt) .

(14)

The system in (14) falls under the purview of Lemma 3, which
means that supt≥0 ‖et‖2 is bounded above and there exists Kω > 0

such that Kt,ω ≥ Kω(t + 1)−τγ . Replacing Kt,ω with Kω(t +
1)−τγ , (13) then falls under the purview of Lemma 2, which means
that

lim
t→∞

(t+ 1)τ0 ‖et,ω‖2 = 0, (15)

for every 0 ≤ τ0 < τγ − 1
2

. The set of sample paths ω ∈ Ω for
which either (11) or (15) holds has measure 1, which yields (6).
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5. NUMERICAL EXAMPLES

In our numerical examples, we consider a team of N = 50 devices
measuring ozone concentration in the same physical neighborhood.
These devices may be static sensor nodes (e.g., [4, 5]), mobile sen-
sors such as drones [3], or smart phones and wearable gadgets in
crowdsensing applications [6]. These devices have different accur-
racy and measurement noise: typical sensors for ozone measure-
ment range in accuracy ±5 parts per billion (ppb) to ±0.25 ppb,
depending on cost [6]. To accomodate varying levels of accuracy,
we present simulations for a range of measurement signal-to-noise
ratios (SNR), specified below. In air quality monitoring, we are inter-
ested in determining if pollutant concentration levels adhere to health
standards. For example, the United States Environmental Protection
Agency (EPA) establishes that a safe concentration of ozone is 70
ppb [17]. In our numerical examples, we let the true value of the
parameter θ∗ = 37 ppb.1 In the first example, we let 15 sensors be
compromised. The compromised sensors (n ∈ A) report measure-
ment streams with mean 100 ppb. The measurements of all devices
are corrupted by additive white Gaussian noise (AWGN) with local
SNR values of 17 dB, 11 dB, 5 dB, and 2 dB.

We run the resilient recursive estimator for 250 iterations with
weights a = 0.02, τ1 = 0.005,Γ = 10, τγ = 0.40. We compare
the performance of the resilient estimator against an unsecure stan-
dard recursive estimator, which does not use the adaptive gainKn(t)
when updating its estimate. We repeat the simulation 200 times and
compute the average root mean square error (RMSE) in ppb at each
iteration.

Fig. 1: RMSE (in ppb) versus iteration averaged over 200 trials
of the resilient estimator (left) and unsecure estimator (right) when
|A| = 15 of the N = 50 sensors are compromised.

Figure 1 shows that the resilient estimator successfully copes with
the compromised devices. Even when 15 out of the 50 devices re-
port falsified measurement data, the RMSE of the resilient estimator
decreases and the estimate moves closer to the true value of the pa-
rameter θ∗ as the number of iterations increases. On the other hand,
the unsecure estimator is unable to cope with the attack. A non zero
RMSE persists in the unsecure estimate, and it does not decrease
with increasing number of iterations.

Next, we study the performance of the resilient estimator as
we vary the number of compromised devices (with fixed threshold
weight Γ = 10) and as we vary the the threshold weight Γ (with a
fixed number of compromised devices |A| = 15). Figure 2 shows
that, as more sensors become compromised, the RMSE of the re-
silient estimator after 250 iterations increases. This demonstrates the

1Data from the EPA shows that, in Pittsburgh, Pennsylvania, from January
2018 to March 2018, the daily maximum ozone concentration ranged from 1
ppb to 87 ppb, with a mean of 37 ppb [18].

Fig. 2: RMSE (in ppb) after 250 iterations of the resilient estima-
tor versus number of compromised sensors (left) and the threshold
weight Γ (right), averaged over 200 trials.

tradeoff that exists between resilience and estimation performance.
Keeping the number of iterations fixed, the estimator’s performance
becomes worse (in terms of RMSE) as the number of compromised
sensors increases. As a consequence, to achieve a given level of
performance (in terms of RMSE), the resilient estimator needs more
iterations with an increasing number of compromised sensors.

Figure 2 also shows the effect of choosing different values of
Γ (in the threshold γt) on the estimation performance after a fixed
number of iterations. If Γ is too small (e.g., in Figure 2, Γ < 1),
then the thresholding limits the impact of noncompromised measure-
ments, resulting in slower convergence. For large enough Γ (e.g., in
Figure 2, 1 ≤ Γ ≤ 10), the resilient estimator limits the contri-
bution of compromised measurements without overly affecting the
noncompromised measurements, resulting in faster convergence and
better performance in terms of RMSE. As Γ becomes too large (e.g.,
in Figure 2, Γ > 10), the compromised measurements have greater
impact on the estimator, resulting in slower convergence. For all
(positive) choices of the threshold weight Γ, we may always im-
prove the estimator performance (decrease RMSE) by increasin the
number of iterations.

6. CONCLUSION

In this paper, we have studied secure analytics for IoT type setups in
the context of resilient recursive estimation. We considered a team
of sensors or devices that each measure an unknown static parameter
over time. The parameter may represent, for example, traffic condi-
tions at a certain intersection or pollutant concentrations in a partic-
ular neighborhood. The sensors transmit their noisy measurement
streams to a fusion center in the cloud, which processes the data on-
line to estimate the parameter. Due to security vulnerabilities of IoT
devices, a subset of the measurement streams fall under attack and
take arbitrary value. We presented a recursive estimation algorithm
that is resilient to such attacks: as long as less than half of the sensors
are compromised, our algorithm constructs a sequence of estimates
that converges almost surely to the value of the parameter. Finally,
we demonstrated the performance of our resilient estimator through
numerical examples based on ozone pollution monitoring. In fu-
ture work, we plan to address resilient recursive estimation in fully
distributed setups, where individual devices must collaborate over a
peer-to-peer communication network and estimate the unknown pa-
rameter without a central coordinator.
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