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ABSTRACT

Recent advancements in signal processing and communication sys-
tems have resulted in evolution of an intriguing concept referred to
as Internet of Things (IoT). By embracing the IoT evolution, there
has been a surge of recent interest in localization/tracking within
indoor environments based on Bluetooth Low Energy (BLE) tech-
nology. The basic motive behind BLE-enabled IoT applications is
to provide advanced residential and enterprise solutions in an en-
ergy efficient and reliable fashion. Although recently different state
estimation (SE) methodologies, ranging from Kalman filters, Parti-
cle filters, to multiple-modal solutions, have been utilized for BLE-
based indoor localization, there is a need for ever more accurate and
real-time algorithms. The main challenge here is that multipath fad-
ing and drastic fluctuations in the indoor environment result in com-
plex non-linear, non-Gaussian estimation problems. The paper fo-
cuses on an alternative solution to the existing filtering techniques
and introduces/discusses incorporation of the Belief Condensation
Filter (BCF) for localization via BLE-enabled beacons. The BCF
is a member of the universal approximation family of densities with
performance bound achieving accuracy and efficiency in sequential
SE and Bayesian tracking. It is a resilient filter in harsh environ-
ments where nonlinearities and non-Gaussian noise profiles persist,
as seen in such applications as Indoor Localization.

Index Terms— State Estimation, Belief Condensation, Blue-
tooth low energy (BLE), Indoor Localization, Internet of Things.

1. INTRODUCTION

The Internet of Things (Internet of Things (IoT)) [1–4] is a new
emerging paradigm and is rapidly gaining ground in different appli-
cations of significant engineering importance including but not lim-
ited to smart home [5], medicare [6], smart industry [7], and smart
public environments [8]. As is, patient serving devices in hospitals,
energy saving appliances in households, and targeted advertising in
consumer markets are a part of the benefits that arise from the IoT
emergence. The main enabling factor of this promising paradigm is
integration of identification, navigation, and localization technolo-
gies [9, 10] with smart hand-held devices equipped with sensing,
processing, and communication capabilities. Bluetooth Low En-
ergy (BLE), referred to as Bluetooth Smart [11, 12], is considered
as the backbone technology for future indoor navigation [13] due to
its high scan rate, very low power consumption, and better signal
geometry. Another unique advantage of the BLE technology in IoT

applications is in the growing number of BLE beacons. The ABI
Research’s report, “BLE Tags: The Location of Things” states that
total BLE beacon shipments could exceed 400 million units in 2020.
With a standard and universally accepted architecture will follow a
plethora of unknown applications that are yet to exceed expectations.

The archetypal system structure for smart applications, typically,
consists of the following three main layers: (i) At the application
level, user focused programs run on both mobile and anchored
devices that turn data into applicable information; (ii) In the sec-
ond layer, the data needed for user applications is distributed and
shared among nodes, and; (iii) At the bottom layer, the communi-
cated/shared data is collected, cut, and cleaned as to provide the
foundation for the information and decision making monument. For
an expanding system that heavily relies on estimations at every level,
accuracy and minimized latency will become paramount with mini-
mal tolerance for error. In different IoT applications that are mainly
concerned with indoor micro localization-tracking, message passing
and cooperative distributed estimation algorithms [14–17] are es-
sential for proper integration of the aforementioned three layers, to
take advantage of the richness of underlying data, and to achieve the
high accuracy and low latency requirements of IoT applications. In
this regard, to perform micro-localization based on BLE tags in IoT
applications, the main-stream methodology is to use the Received
Signal Strength Indicator (RSSI) [18]. The RSSI-based solutions,
however, are prone to multipath fading and drastic fluctuations in
the indoor environment [19]. A technical challenge in RSSI-based
solutions is the presence of non-linearities at the low-level system.
Such non-linearities have irrepressible precautions for estimation
algorithms and can degrade performance if not properly dealt with.
Another major hurdle for computing the exact states is the uncer-
tainty and intermittence in the network connectivity. In most indoor
environments, the exact form of the system noise is not known.
Therefore, estimation algorithms must have built-in resilience to
uncategorical noise models.

To deal with these issues within BLE-based indoor localiza-
tion, multitude of advanced signal processing solutions are utilized.
Kalman filters (KFs) [20,21] are used to smooth RSSI, Particle filters
(PFs) [22] are incorporated to deal with non-linearities of the under-
lying model, Combination of linear (KFs) and non-linear techniques
(PFs) are utilized, Gaussian sum filters [23], and multiple-model so-
lutions [24] are used to deal with non-Gaussian and unknown noise
characteristics. In this paper, we introduce/incorporate an alterna-
tive solution to the existing filtering techniques used recently for
indoor localization/tracking via BLE-enabled beacons. The goal is
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to set forth a principled unifying framework to exploit contextual
information. Given the scale, distributability, and precision neces-
sary in IoT, the proposed framework aims to be compact, adaptive,
and cascade minimal error through the system, and in so doing ac-
commodate to the different needs of a content-rich network. In par-
ticular, the paper presents and incorporates the belief condensation
filter (BCF) [25, 26], that provably performs well under non-linear,
non-Gaussian conditions. The BCF provides a unified methodology
for the design and analysis of different filtering techniques. The BCF
can efficiently represent the complex distributions arising in RSSI-
based filtering problems, and is obtained from an optimality criterion
established based on a general framework for filtering techniques.

The remainder of the paper is organized as follows: Section 2
formulates the RSSI-based indoor localization problem. The BCF
framework is introduced in Section 3. Experimental results are pro-
vided in Section 4. Finally, Section 5 concludes the paper.

2. PROBLEM FORMULATION

For a system whose state evolves through time, the specific system
dynamics can be described by a Hidden Markov Model (HMM). For
example, in the case of indoor localization, which is the focus of this
paper, the state vector xk represents the coordinates of a moving
agent in a building and the task of estimation is to predict the next
state xk+1 and correct the outcome using RSSI measurements de-
noted by yk. For instance, in indoor localization/tracking problems
using BLE-enabled beacons, nonlinearities within the RSSI can be
captured by the following path loss model

yk , RSSI = −10n log(d) + C, (1)

where n represents path loss component, d is the distance between
the user and beacon, and C is the average RSSI. The overall state-
space model of the system is, therefore, given by

xk+1 = g(xk) + qk (2)
yk = h(xk) + nk, (3)

where qk and nk denote the dynamic model evolution and observa-
tion model uncertainty at time k, respectively. The HMM framework
leads to the following two immediate assumptions:

1. The states xk form a Markov chain, i.e., agent coordinates at
a time k only depend on those of the previous time step(s).

2. Observations yk are independent given the states xk.

The joint distribution of state and observation variables, therefore,
factors as follows

f(x1:k,y1:k) =
k∏
i=1

f(xi|xi−1)f(yi|xi)

= f(x1:k−1,y1:k−1)f(xk|xk−1)f(yk|xk),(4)

where y1:k = {y1, . . .yk}. Computing the posterior density
f(xk|y1:k) as an inference problem, is therefore obtained by multi-
ple applications of the Bayes rule

f(xk|y1:k) =
f(yk|xk,y1:k−1)f(xk|y1:k−1)

f(yk|y1:k−1)
(5)

=
f(yk|xk)

∫
f(xk−1|y1:k−1)f(xk|xk−1)dxk−1

f(yk|y1:k−1)
.

This computation referred to as the filtering process, can be decom-
posed into two steps

f(xk|y1:k−1) ∝
∫
f(xk−1|y1:k−1)f(xk|xk−1)dx (6)

f(xk|y1:k) ∝ f(yk|xk)f(xk|y1:k−1). (7)

3. BELIEF CONDENSATION FILTERING

In this section, the details of the BCF filter are outlined, together with
analysis that explores such advantages. The BCF is a filtering frame-
work where the true posterior of the state vector is approximated by
a mixture of probability density functions. It has been shown [26]
that under certain optimality conditions, BCF can provide accura-
cies approaching the theoretical bounds and outperforming existing
techniques, particularly for non-linear/non-Gaussian problems. One
of the main advantages of the BCF filtering method is its treatment
of the observation function as an inverse problem. While Kalman-
like filters tend to linearize the observation method (where needed)
or approximate the posterior distribution with its Gaussian counter-
part (e.g., in the case of Unscented Kalman filter), the BCF filter
makes no assumptions as to what form h(·) must attain. This level
of abstraction equips the BCF filter with interesting performance ad-
vantages while keeping the computational complexity low.

Consider the mixture family FΞm with an instance member
g(x; ξ) given by

g(x; ξ) =

m∑
i=1

αigi(x; θi), (8)

where αi ∈ R+, for (1 ≤ i ≤ m);
∑m
i=1 αi = 1, and; gi(x; θi), for

(1 ≤ i ≤ m), belongs to an exponential family FΘm , i.e.,

gi(x; ξ) = qi(x) exp{θTi ti(x)−Ai(θi)}. (9)

Here θi ∈ Θi, ti(x), and Ai(θi) are the natural parameters, suffi-
cient statistics, and log-partition function of FΘi . The parameter set
for g(x; ξ) consists of ξ = (α1, θ1, · · · , αm, θm) ∈ Ξm.

Let f ∈ P from the distribution family P denote the poste-
rior distribution that we wish to approximate by g(x; ξ) ∈ FΞm .
For instance, in our particular analysis f(x) = f(xk|y1:k). The
Kullback-Leibler (KL) divergence DKL(·) between the probability
distributions f(x) and g(x; ξ) is defined as follows

DKL (f(x), g(x; ξ)) = Ef(x)

{
log

f(x)

g(x; ξ)

}
. (10)

It can be shown that, BCF recursions (see Theorem 1 in [26]), con-
dense the probability distribution f(x) into a mixture of exponential
families with recursive update coefficients

α
[l+1]
i = α

[l]
i E

gi

(
x;θ

[l]
i

){ f(x)

g(x; ξ[l])

}
, (11)

for (1 ≤ i ≤ m), and θ[l+1]
i satisfying

E
gi

(
x;θ

[l+1]
i

){ti(x)} =

E
gi

(
x;θ

[l]
i

) { f(x)

g(x;ξ[l])
ti(x)

}
E
gi

(
x;θ

[l]
i

) { f(x)

g(x;ξ[l])

} . (12)

for (1 ≤ i ≤ m), and any initial parameter
ξ[0] = (α

[0]
1 , θ

[0]
1 , α

[0]
2 , θ

[0]
2 , · · · , α[0]

m , θ
[0]
m ). In the case where the ex-

ponential families are Gaussian, i.e., gi(x; θi) ∼ N (µi,Σi), with
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Fig. 1. MSE plot for a non-linear model using BCF and EKF.

each mixture component parameterized by θi = {µi,Σi}, then the
natural parameter θ[l+1]

i at update step (l + 1) can be obtained in a
closed form as shown below:

µ
[l+1]
i =

E
gi

(
x;θ

[l]
i

) { f(x)

g(x;ξ[l])
x
}

E
gi

(
x;θ

[l]
i

) { f(x)

g(x;ξ[l])

} (13)

Σ
[l+1]
i =

E
gi

(
x;θ

[l]
i

) { f(x)

g(x;ξ[l])
xxT

}
E
gi

(
x;θ

[l]
i

) { f(x)

g(x;ξ[l])

} − µ[l+1]
i

(
µ

[l+1]
i

)T
. (14)

Eqs. (13) and (14) provide a recursive method for calculating and
updating the state variables in each step. The main complexity in
this computation comes from carrying out the computation for the
expectation integrals. The fact that these expectations are taken with
respect to a member of an exponential family (namely a Gaussian
distribution) can be exploited, for which efficient quadrature rules
exist [27]. In this case, these integrals can be efficiently computed
with polynomial time inm the number of components; q the number
of quadrature points, and; d the dimension of the state vector.

Example 1 (A Non-linear Model) Consider an observation model
where we try to estimate parameter x ∈ R given N i.i.d. noisy
observations yi ∈ R. In particular, imagine the relation between
the observation y and state parameter x to be expressed by the non-
linear function h(x) = x2 sin(x), which gives rise to the following
observation model

yi = x2 sin(x) + ni, i = 1, 2, · · ·N

where ni is independent, additive noise term distributed according
to a normal Gaussian distribution with variance σ2

n = 0.1. To char-
acterize the performance of the BCF algorithm, a Monte Carlo sim-
ulation is run and the MSE over 100 trials is computed. In each
trial, we generate N = 5 noisy observations from the true value
of x = 2.2 and make point estimation using both BCF and EKF
methods. We use the mean of the posterior as the point estimate.
The results are shown in Fig. 1. From Fig. 1, it can be seen that in
the presence of non-linearity in the model, the BCF outperforms the
Kalman filter due to linearization assumptions such methods make.

Algorithm 1 BELIEF CONDENSATION FILTER.
Required: Base points {uj}qj=1 for Gaussian Guadratures, mea-
surements y[k]

Initilaization: Choose a family of mixtures
g(x; ε0) =

∑m
i=1 α

[0]
i gi(x; θ

[0]
i ) of Gaussian distribu-

tions gi(x; θi) ∈ N (µi,Σi), and initialize parameters
ε0 = {α[0]

1 , θ
[0]
1 , α

[0]
2 , θ

[0]
2 , . . . , α

[0]
m , θ

[0]
m }. Set f̂0 equal to the

prior distribution of x: f̂0 = fprior(x).
1: for k = 1, 2, 3, ..., do
2: for i = 1 . . .m, do
3: Factor Σ

[k]
i = LiL

∗
i , with Cholesky decomposition

4: for j = 1 . . . q, do
5: xj = Liuj + µ

[k]
i

6: fj(xj) =
gi(xj ;θ

[k]
i )f(y[k]|xj)∑m

l=1
=αk

l
gi(xj ;θ

[k]
l

)

7: end for
8: Set C =

∑q
j=1 fj(xj)

9: Parameters Updating:

• µ[k]
i ←

∑q
j=1 xjfj(xj)

C

•Σ
[k]
i ←

∑q
j=1(xj−µ

[k]
i )(xj−µ

[k]
i )T fj(xj)

C

• α[k]
i ← α

[k−1]
i .C

10: end for
11: Re-normalize:

∑m
i=1 α

[k]
i = 1

12: Approximation: f̂k =
∑m
i=1 α

[k]
i gi(x; θ

[k]
i )

13: end for

BCF-MSE PF
m MSE [m] n MSE [m]
5 0.70 10 1.3
7 0.49 50 0.68
9 0.44 100 0.47
11 0.38 300 0.49
13 0.32 500 0.46
15 0.32 1000 0.50

Table 1. MSE values in meters, for BCF as a function of component
number m vs PF as a function of particle number n.

It can also be seen that, with increasing m, the accuracy in estima-
tion for BCF also improves. Fig. 2 shows the convergence behavior
of the coefficients αi which in general settle after l = 5− 10 steps.

4. NUMERICAL EXPERIMENTATION AND ANALYSIS

In this section, we apply the BCF methodology to the problem of
state estimation (SE) in Indoor Localization. We adopt the test set-
up in [18] and use the RSSI measurements to perform location es-
timation for a stationary device. The measurements are collected
indoors by three BLE beacons located at coordinates (0, 0), (d, 0),
and (d, d), with d = 5m, and the device rests at coordinates ( 2d

3
, d

3
).

The parameters for the environment model of Equation (1) are given
as n = 2.511 and C = 75.54. Since the device is not in motion, i.e.
g(·) = 1(·) of Eq. (2), the problem boils down to correcting the posi-
tion using the relation in Eq. (7). We generate K = 500 initial posi-
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Fig. 2. Convergence plots of αi’s in the BCF algorithm.
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Fig. 3. MSE computation for the BCF as a function of the number of
mixture components m. Point estimation is performed by: (i) BCF-
GDA: posterior mean constrained to Σi = Σj ,∀i, j; (ii) BCF-MSE:
posterior mean; (iii) BCF-ALPHA: posterior mode constrained to
Σi = Σj ,∀i, j; (iv) BCF-MAP: posterior mode.

tions xk, and take 90 independent measurements yk to perform esti-
mation x̂k of the state vector in relation yk = h(xk)+nk, each trial.
The noise here is assumed to be i.i.d. Gaussian and the point estima-
tion is done using four different methods. Each method is evaluated
with an aggregate MSE given by MSE = 1

K

∑K
k=1 ||xk − x̂k||2,

where here the number of trials K = 500. This is done for different
settings of BCF with m = 1, 3, · · · , 50 components. The measure-
ment data yk are provided in the public database of [18]. The ques-
tion here is, under equal dynamic and noise models, what accuracy
(MSE) and efficiency (computation time) does the BCF achieve?

Fig. 3 shows the MSE as a function of mixture components m
for BCF, for four different point estimation methods. In the case
of BCF-GDA, the covariance matrices of the BCF components are
set equal (Σi = Σj , ∀i, j ∈ {1 · · ·m}). This behaves as Gaus-
sian Discriminant Analysis, a linear boundary classifier, and with
increasing components m tends to deteriorate. The BCF-MSE es-
timate corresponds to taking the mean of the posterior f(xk|y1:k),
which achieves localization accuracies within 70cm at m = 9. The
BCF-ALPHA favors the data by optimizing coefficients αi, i.e. fixed
(µi,Σi). Its location error lies under 15cm. The final curve, MSE-
MAP estimates location by computing the mode of the posterior dis-
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Fig. 4. Complexity analysis in terms of computation time as a func-
tion of state dimension (d) for the BCF and PF algorithms at r = 2.

tribution. The MAP estimate is most resilient to sparsity in data.
Table 3 shows the MSE for BCF against the PF filter in one in-

stantiation of the process. At starting from m = 7 the same levels
of accuracy as PF with high number of particles n = 1000 is ob-
tainable. In the current literature, it is claimed that in the limit PF
indeed can achieve the theoretical bounds of estimation accuracy.
On the other hand, it is known that PF suffers from the curse of
dimensionality as it utilizes Monte Carlo methods to approximate
multidimensional integrals [28–30]. We pursue and compare here
the computation time of the BCF and PF through numerical exper-
imentation. We adopt a methodology presented in [31], whereby a
dimension free metric for error is introduced. Adopting the notation
of [31], let r denote the Mean Dimension-Free Error defined as

r =
E {(x− x̂)∗J(x− x̂)}

d
(15)

where x̂ is the estimate of x from the BCF or PF, d is the state
dimension, J is the inverse of the estimation error covariance matrix,
x is the state vector to be estimated, and (·)∗ denotes the transpose
of (·). First the number of mixture components m or particles n is
selected that obtain a fixed value of r. The complexity of each filter
is then defined as the time it takes the algorithms to reach r. From
Fig. 4, at the same accuracy, we see the benefit in choosing BCF
carrying far less components over PF’s computational burden.

5. CONCLUSION

Due to the nature of the sensory networks of the IoT, it is logical
to view its evolutionary dynamics in a probabilistic framework. Al-
though recently different SE approaches within Bayesian formula-
tion have been used for BLE-based indoor localization, the achiev-
able overall accuracies are still limited. This is mainly due to the
multipath fading and drastic fluctuations in the indoor environment
resulting in complex non-linear, non-Gaussian estimation problems.
To tackle these problems, different linear and non-linear estimators
such as Kalman filters, Particle filters, Gaussian sum filters, and
multiple-model techniques have been utilized for BLE-based local-
ization. In this paper, we focus on an alternative solution to the ex-
isting filtering techniques and introduce/discuss incorporation of the
BCF for indoor tracking via BLE-enabled beacons. The paper shows
that the BCF is a suitable candidate for the ubiquitous networks of
the future.
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