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ABSTRACT

In this paper, we study an active user detection problem for massive
machine type communications (mMTC). The users transmit pilot-
hopping sequences and detection of active users is performed based
on the received energy. We utilize the channel hardening and fa-
vorable propagation properties of massive multiple-input multiple-
output (MIMO) to simplify the user detection. We propose and com-
pare a number of different user detection methods and find that using
non-negative least squares (NNLS) is well suited for the task at hand
as it achieves good results as well as having the benefit of not having
to specify further parameters.

Index Terms— massive MIMO, machine type communication,
compressed sensing.

1. INTRODUCTION

In massive machine type communications (mMTC) there is a huge
number of users that sporadically transmit small amounts of data to
the base station [1]. This means that the number of active users at
a given time instant is typically much smaller than the total number
of users in the system. Moreover, the users that we consider are
not concerned about latency as the data they are transmitting is not
critical. An example of these types of devices are simple internet-of-
things (IoT) sensors.

The mMTC users do not want to spend many resources on over-
head signaling such as random access or requesting to be scheduled
as they only transmit small amounts of data. Therefore, these users
will benefit from using a grant-free access scheme. Grant-free ran-
dom access for mMTC with massive MIMO has been studied in
many papers, for instance in [2–4], and different techniques are sum-
marized in [5].

To completely avoid pilot contamination in massive MIMO, all
the users need to be assigned mutually orthogonal pilots during train-
ing. However, in the mMTC case, the number of users is far too large
to be assigned to orthogonal pilots in advance and temporary assign-
ment of orthogonal pilots is not possible in grant-free access. To
resolve this issue we can let the users have unique non-orthogonal
pilots or let the users transmit the pilots in unique pilot-hopping se-
quences during many coherence intervals.

The notion that the users transmit pilot-hopping sequences for
activity detection is introduced in [6], however the activity detec-
tion is, in that paper, assumed to be perfect. In this paper, we intro-
duce an efficient way to solve this problem as well as analyze the
performance of the method. We assume that the data transmission
is only in the uplink and that the latency requirements are lenient
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Fig. 1: Three users transmitting pilot-hopping sequences of length
four using two pilots,φ1 andφ2. Additionally, in coherence interval
t the user k also transmits uplink data Dk(t).

which means that we can postpone the channel estimation to the ac-
tive users until the end of the pilot-hopping sequences. Each coher-
ence interval (τc samples) in the proposed scheme is split into two
parts: the uplink pilot phase (τp samples) and the uplink data phase
(τc − τp samples). This is unlike canonical massive MIMO systems
where each coherence interval also has a downlink data phase [7].
In Fig. 1, an example of four coherence intervals of three users us-
ing two orthogonal pilots, φ1 and φ2, is pictured in the proposed
scheme. The figure also depicts how the users transmit data; user k
transmits data Dk(t) in coherence interval t.

1.1. Related Works

Related works on detecting active users in grant-free random access
with massive MIMO study one coherence interval at a time. The
AMP algorithm from [8] is demonstrated in [2] to be a promising
technique for active user detection in mMTC. In [2] pilots are gen-
erated randomly and active user detection is performed by the AMP
algorithm. Further, [3] studies how a few number of bits can be em-
bedded in the pilot sequences for non-coherent data transmission.
In [4], the authors consider other compressed sensing techniques
such as non-negative least squares (NNLS) and derive a scaling law
on parameters required for reliable detection of active users.

1.2. Contributions

In this work, we consider a setup with multiple coherence inter-
vals where the users transmit pilot-hopping sequences as introduced
in [6]. We observe that with the channel hardening and favorable
propagation properties of massive MIMO, the problem can be sim-
plified and solved with compressed sensing techniques. We propose
a novel user detection algorithm that performs very well for the task
at hand.

2. SYSTEM MODEL

We consider a single-cell system where the base station is equipped
with M antennas and serves K users. However, not all of these
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users are active. We assume a block fading model where in each
coherence interval the channel is assumed to be time invariant and
frequency flat. There are τp orthogonal pilots to choose from and the
pilot-hopping sequences are T coherence intervals long. At the pilot
phase of coherence interval t, the base station receives

Y t =

K∑
k=1

τp∑
j=1

αkS
t
j,k
√
τppkg

t
kφ

H
j +N t, t = 1, . . . , T (1)

where

αk =

{
1 if user k is active,
0 otherwise, (2)

Stj,k =

{
1 if user k sends pilot j at pilot phase t,
0 otherwise, (3)

pk is the transmit power of user k, gtk ∈ CM is the channel between
user k and the base station in coherence interval t, and φj ∈ Cτp is
the j:th pilot consisting of τp symbols. The pilots are mutually or-
thogonal, φH

i φj = 0, i 6= j, and have unit norm, ‖φi‖ = 1. Finally,
N t ∈ CM×τp is noise with i.i.d. CN (0, σ2) elements. The model
assumes that the users are synchronized in the sense that all the ac-
tive users start their pilot-hopping sequence at the same coherence
interval.

In each coherence interval, the base station computes an estimate
of the received signal energy over each pilot as

Ei,t =
(Y tφi)

H(Y tφi)

M
− σ2 =

‖Y tφi‖2

M
− σ2. (4)

Assuming a block independent Rayleigh fading channel with
large-scale fading βk, gtk ∼ CN (0, βkI) we can use the properties

of channel hardening, ‖g
t
k‖

2

M
→ βk, as M → ∞, and favorable

propagation,
(gtk)

H(gt
k′ )

M
→ 0, as M →∞, k 6= k′, to see that

Ei,t =
‖Y tφi‖2

M
− σ2

→
K∑
k=1

αkS
t
i,kτppkβk as M →∞. (5)

In practice, the number of antennas M will be finite but these limits
can be used as to obtain a simpler design. The limits are normally
tight at around 50 antennas [9, p. 192].

Our single-cell model also gives accurate results for multi-cell
systems. When considering a multi-cell scenario, using orthogonal
pilots is not feasible as the coherence interval is limited. Consid-
ering a reuse factor of one, the effect of pilot contamination from
neighboring cells will aggregate in the target cell which might im-
pair the user detection (and channel estimation quality). However,
considering a large enough pilot reuse factor the effects of pilot con-
tamination from other cells will be relatively small and therefore not
affect the target cell much. In this case, the product of the reuse fac-
tor and the number of orthogonal pilots would still have to be smaller
than the coherence interval.

3. DETECTING ACTIVE USERS USING THE
ASYMPTOTIC ENERGIES

In this section, we solve the user detection problem by studying the
asymptotic energies in (5). We place all the received energies over
the T pilot phases and τp pilots in a vector

y =
(
E1,1 . . . Eτp,1 . . . Ei,t . . . E1,T . . . Eτp,T

)T
. (6)

Using terminology from compressed sensing, we also create a
τpT × K measurement matrix of the asymptotic behavior of the
energies:

A =



S1
1,1τpp1β1 · · · S1

1,KτppKβK
...

. . .
...

S1
τp,1τpp1β1 · · · S1

τp,KτppKβK
. . .

... Sti,kτppkβk
...

. . .
ST1,1τpp1β1 · · · ST1,KτppKβK

...
. . .

...
STτp,1τpp1β1 · · · STτp,KτppKβK


. (7)

There are τTp unique pilot-hopping sequences, therefore, the
number of users must be K ≤ τTp . However, the product of the
number of pilots and the sequence length is most likely smaller
than the number of users: τpT ≤ K. Therefore, the measurement
matrix A is wide which means that we have more unknowns than
measurements.

The measurement matrix is sparse when orthogonal pilots are
used and only T elements per column will be non-zero. This stems
from the fact that one user can only transmit one pilot at a time.

To detect the active users, we use the fact that in the asymptotic
case whenM is large y is a linear combination of the user activities:

y → Aα as M →∞, (8)

whereα = (α1 . . . αk . . . αK)T.This comes from (5), i.e., the chan-
nel hardening and favorable propagation properties of the channel.
In the non-asymptotic case this will only hold approximately hence
our goal is to minimize the error between the asymptotic energies
and the observed energies.

The fact that we have a sparse input signal α and a wide mea-
surement matrix A indicates that we should consider using com-
pressed sensing techniques. We start by posing the following prob-
lem:

argmin
α∈{0,1}K

λ‖α‖0 + ‖Aα− y‖22 (9)

where the first term is imposing sparsity in the solution with a weight
of λ ≥ 0 and the second term aims to minimize the error. This
problem is combinatorial and hard to solve when there are many
users, i.e., when K is large. Therefore, we relax the problem to the
non-negative LASSO (NLASSO)

argmin
α≥0

λ‖α‖1 + ‖Aα− y‖22 (10)

where instead the sparsity is induced by the `1-norm. To detect the
users, the elements of the resulting α are compared to a threshold.

It is known that for measurement matrices,A, that fulfil the self-
regularizing property [10, Condition 1] the `1-regularization term in
the NLASSO problem is not needed to induce sparsity. Hence, our
problem can also be posed as the NNLS problem

argmin
α≥0

‖Aα− y‖22 (11)

where we benefit from not having to choose a regularization param-
eter λ. The relation between the NLASSO and the NNLS is dis-
cussed in [10–13]. In essence, both the methods can be related to the
`1-squared non-negative regularization.
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4. MAXIMUM LIKELIHOOD DETECTION OF ACTIVE
USERS

To not have to rely on asymptotic approximations, in this section, we
derive the maximum likelihood (ML) detector of the user detection
problem. If we despread the received signal in (1) at time t onto the
pilot i we get

Y tφi =

K∑
k=1

αkS
t
i,k
√
τppkg

t
k +N tφi (12)

which conditioned on the activity of the users α is distributed as

Y tφi | α ∼ CN

(
0,

(
K∑
k=1

αkS
t
i,kτppkβk + σ2

)
I

)
. (13)

The norm squared of the despread signal is distributed as follows:

‖Y tφi‖2 | α ∼

(
K∑
k=1

αkS
t
i,kτppkβk + σ2

)
1

2
χ2
2M . (14)

The squared norms are parts of the vector y defined in (6). We define
a new vector

ỹ =
(
‖Y 1φ1‖2 . . . ‖Y 1φτp‖

2 . . .

‖Y tφi‖2 . . . ‖Y Tφ1‖2 . . . ‖Y Tφτp‖
2
)T

(15)

= M(y + σ21). (16)

The elements of ỹ are conditionally independent given α as all the
sources of randomness are independent for different coherence in-
tervals t and pilots i.1 Because of the independence, the joint proba-
bility density function is the product of the probability density func-
tions of each element. We let aTi denote the i:th row of the matrix
A defined in (7). The probability density function of the vector ỹ is
then

p(ỹ | α) =

τpT∏
r=1

1

Γ(M)(aTrα+ σ2)M
ỹM−1
r

× exp

(
− ỹr
aTrα+ σ2

)
. (17)

Hence, the ML detector is

argmax
α∈{0,1}K

p(ỹ | α)

= argmin
α∈{0,1}K

τpT∑
r=1

M ln(aTrα+ σ2) +
ỹr

aTrα+ σ2
. (18)

We note that finding the ML detector is a difficult problem without
doing an exhaustive search.

5. MAXIMUM A POSTERIORI DETECTION OF ACTIVE
USERS

In this section, we assume a prior distribution on the user activity
and derive the maximum a posteriori (MAP) detector of the user
detection problem. If we assume that the activity of each user is

1However, if the pilots were not orthogonal the elements of ỹ would only
be independent over time but not over pilots.

Table 1: The simulation parameters used unless anything else is
stated.

Parameter Value Parameter Value
K 1000 SNR 0 dB
M 70 τp 10

Pα 0.01 T 10

independent and Bernoulli distributed with a Pα probability of being
active, i.e.,

p(α) =

K∏
k=1

Pαk
α (1− Pα)1−αk , (19)

we can state the MAP detector

argmax
α∈{0,1}K

p(ỹ | α)p(α)

= argmin
α∈{0,1}K

τpT∑
r=1

M ln(aTrα+ σ2) +
ỹr

aTrα+ σ2

+ ln

(
1− Pα
Pα

)
1Tα. (20)

Finding the MAP detector is, just as finding the ML detector, difficult
without doing an exhaustive search. Note that the difference between
(18) and (20) is a scaled summation of α1, . . . , αK which can in the
binary case be seen as the zero-norm ofα or in the non-negative case
be seen as the `1-norm of α. This implies that the MAP detector
enforces sparser solutions than the ML detector.

6. SIMULATIONS

In this section, we present some numerical results to illustrate the
performance of our proposed detection methods using asymptotic
energies, (10) and (11). We compare to the performance of the sta-
tistical methods in (18) and (20). The simulation parameters, unless
otherwise stated, can be found in Table 1. The users’ pilot-hopping
sequences are chosen uniformly at random from all the possible τTp
sequences. The users perform power control in the form of statistical
channel inversion [9]

pk = p
min
k′

βk′

βk
= p

βmin

βk
, (21)

where βmin = mink′ βk′ is the large-scale fading of the user with
the worst channel and p is a system wide power parameter. The
aim with this power control scheme is that the received power at
each of the base station antennas from each user should be equal,
pkβk = pβmin

βk
βk = pβmin. The signal-to-noise ratio is defined as

SNR = pβmin
σ2 .

The probability of missed detection, pm, and the probability of
false alarm, pfa, are defined as

pm =
#undetected active users

#active users
and pfa =

#detected inactive users
#inactive users

,

respectively.
The NNLS is solved by an implementation of the Lawson-

Hanson algorithm [14]. The curves denoted by ML and MAP are
suboptimal solutions to problems (18) and (20) where the binary

8382



Table 2: References to the detectors used in the simulations.

Detector Equation Detector Equation
ML suboptimal (18) NLASSO (10)
MAP suboptimal (20) NNLS (11)
Greedy iterative (22), (23)

constraints have been relaxed to non-negative constraints. The non-
convex optimization problems are solved with a gradient descent to
find a local optimum. The gradient descent step size is found with
a backtracking algorithm and the best of 50 solutions is used to in-
crease the probability of finding the global optimum. The NLASSO
is solved with an implementation in CVX [15] with the MOSEK
solver [16]. The greedy iterative algorithm works by repetitively
detecting the user with the highest accumulated energy,

k̂ = argmax
k

T∑
t=1

τp∑
i=1

Ei,tS
t
i,k, (22)

and removing the corresponding asymptotic energy,

Ei,t := Ei,t − Sti,k̂τppk̂βk̂, (23)

until the remaining energy falls below a threshold. The references to
the respective equations for the detectors are summarized in Table 2.

From Fig. 2 we can see that when the number of antennas is
small the NNLS method does not perform well compared to the sub-
optimal ML and MAP. The reason for this is that the approximation
made by taking M to the limit will not hold. When M is larger, the
NNLS will perform better. This is because the ML and MAP are
solved suboptimally due to the prohibitive complexity of an exhaus-
tive search. We can also conclude that the greedy iterative algorithm
is not well suited for this problem. The reason for this is that users
with colliding pilots will have higher accumulated energies which
can lead to false alarm.

In Fig. 3, we can compare NLASSO with NNLS. In this simu-
lation the NNLS is solved like the NLASSO but with the regulariza-
tion parameter λ set to 0. We see that the regularization parameter is
not needed and thatA has self-regularizing properties. This is holds
irregardless of the number of antennas M . Although not shown in
the figure, the same results can be seen with larger regularization
parameters λ.

Fig. 4 shows that increasing the number of orthogonal pilots and
the length of the sequence significantly improves the performance.
Increasing the number of pilots or the length of the pilot-hopping
sequence will make the matrixA taller.

7. CONCLUSIONS

In this paper we studied an active user detection problem for mMTC
in massive MIMO. The scheme is based on detecting pilot-hopping
sequences by looking at the received energy. We saw that when there
is a large number of base station antennas we can utilize the channel
hardening and favorable propagation properties to simplify the prob-
lem which can then be solved with compressed sensing techniques.
We observed that the non-negative least squares approach is suitable
to solve the problem as it performs well and benefits from not having
to set additional parameters, e.g., regularization parameters.
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Fig. 2: ROC-curves of different methods using few antennas,
M = 10, and many antennas, M = 70, at the base station.
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Fig. 3: ROC-curves comparing NNLS with NLASSO.
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Fig. 4: Probability of missed detection given a certain probability
of false alarm of the proposed scheme, solved with NNLS while
changing a parameter.
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