
DEEP CONVOLUTIONAL FEATURE HISTOGRAMS FOR VISUAL OBJECT TRACKING

Paraskevi Nousi Anastasios Tefas Ioannis Pitas

Department of Informatics, Aristotle University of Thessaloniki, Greece

ABSTRACT

Visual Object Tracking remains an open and challenging task
in the Computer Vision field, requiring tracking algorithms
to achieve a feeble balance between precision and speed per-
formance. In this work, inspired by the classic Mean Shift
algorithm for object tracking using histograms, as well as
the recent advances of deep Convolutional Neural Networks
(CNNs), we propose a novel tracker that incorporates ele-
ments from both worlds. Our tracker uses a deep CNN as the
feature extraction backbone, which is capable of extracting
semantically meaningful features from the target and its back-
ground, as well as a fully learnable Bag-of-Features mech-
anism which extracts histograms from those features. The
tracker operates in a fully-convolutional fashion, allowing for
the direct and efficient evaluation of multiple possible target
locations. Extensive experimental results demonstrate the ef-
ficiency and effectiveness of the proposed tracker, allowing it
to run at high speeds even on systems with lower computa-
tional capacity.

Index Terms— Visual Object Tracking, Convolutional
Neural Networks, Convolutional Bag of Features

1. INTRODUCTION

In the field of computer vision, Visual Object Tracking refers
to the localization of an arbitrary object of interest over sub-
sequent video frames, given its initial appearance and loca-
tion. A tracker will typically extract and maintain a model
of the object and use that model to search for and locate the
target in successive frames, the challenge lying in avoiding
similar objects, while dealing with appearance changes, oc-
clusions, cluttered backgrounds, fast movement, etc. In real-
life applications, visual analysis algorithms are also required
to run at real-time speed [1], and tracking algorithms should
be equipped to deal with tracking an object over several lost
frames, which is significantly more challenging or even pro-
hibitive depending on the tracker’s speed.

In a typical tracking scenario, the tracker first builds a tar-
get model, which should be discriminative enough that the
tracker doesn’t drift, albeit forgiving to appearance changes.
An intuitive approach to such problems is to update the target
model with each subsequent frame, in a way such that small
changes are incorporated into the model gradually. Depend-

ing on the nature of the tracker however, this process may
cause significant delays to the tracking process. To accom-
modate real-time applications, trackers must be efficient in
both their localization strategy as well as their model update
procedure.

Amongst the most pioneering and foundational tracking
algorithms lie Discriminative Correlation Filters (DCF) [2],
and Mean Shift (MS) [3, 4], tracking approaches. More recent
trackers exploit the semantically meaningful feature represen-
tations extracted by Convolutional Neural Networks (CNNs)
and typically rely either on online optimization of the network
parameters or offline learning to produce discriminative fea-
tures while maintaining high tracking speed.

In this work, we revisit the histogram-based tracking
paradigm utilized by MS-based trackers while making use
of CNNs for feature extraction to benefit from their success.
We employ a fully learnable Bag-of-Features module into the
feature extracting process of a CNN to extract histograms
from both the target and a wider search area. Using these
histograms, which encode convolutional feature map infor-
mation into compact representations, we are able to locate the
target by matching the target and area histograms in a fully
convolutional fashion. The proposed tracker runs at high
speeds even on devices with limited computational capabil-
ities while achieving significant results on multiple tracking
benchmarks.

The rest of this paper is organized as follows. Section 2 is
a summary of related work on visual object tracking. Section
3 introduces and analyzes in depth the proposed tracker and
methodology. The experimental results, which validate our
hypotheses, are presented in Section 4, and finally Section 5
summarizes our findings.

2. RELATED WORK

Recently, convolutional neural networks have met great suc-
cesses in various visual analysis fields, including object
recognition, detection and tracking. Trackers based on con-
volutional neural networks, have recently started to attract
research attention. Trackers like MDNet [5], ECO [6], have
achieved state-of-the-art performance on various object track-
ing benchmarks, at the cost of very slow tracking speeds. We
focus on more lightweight trackers which can run at real-time
speeds.

8375978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



GOTURN [7], is a CNN-based tracker, trained to regress
the new target position, given the target and a candidate re-
gion. The target and candidate regions are first mapped to an
intermediate representation using a fully convolutional net-
work. The two representations are then fed to a series of fully
connected layers, and the final layer predicts the new position
and size of the target. Amongst its drawbacks are the need
for severe data augmentation during training, to simulate as
many changes in position and scale as possible, as well as the
tracker’s performance.

SiamFC [8] is another CNN-based tracker, trained as a
fully convolutional siamese network, which performs cross
correlation between the features extracted from the target
and a candidate region to find the new position of the target.
In contrast to GOTURN, data augmentation is unnecessary,
due to the network’s fully convolutional nature. Its succes-
sor, CFNet [9], included a Discriminative Correlation Filter
(DCF) module, presented as a fully learnable layer. Ever
since, more approaches have combined DCFs with CNNs,
such as DCFNet [10].

The classic Mean Shift (MS) and its adaptive version
[4, 3] both use color histograms extracted from the target
weighted by a differentiable kernel profile, to finally extract
the new position of the target using the mean shift vector.
In this work, histograms of convolutional features are ex-
tracted from both the target and candidate regions, using a
fully learnable Bag-of-Features module, and compared using
histogram matching measures in a convolutional fashion. The
new position of the target is chosen by finding the position at
which the maximum similarity is achieved. The use of his-
tograms makes such tracking algorithms robust to appearance
changes, such as pose and viewpoint [11].

3. PROPOSED METHOD

3.1. Histogram-based Tracking

In classic Mean Shift tracking [4], the target is represented by
a spatially weighted histogram of features extracted from each
spatial location of the input image corresponding to the target.
Let an input image be represented by features f ∈ RH×W×C ,
lying on a regular lattice x ∈ RH×W×2, where C is the num-
ber of channels and H , W are the spatial dimensions. Also
let f⋆ij ∈ Rh×w×C represent those features that spatially cor-
respond to the target, with h, w being its spatial dimensions,
and x⋆

ij ∈ Rh×w×2 represent its spatial coordinates, centered
around 0, with i, j indexing the coordinates corresponding to
the target. Finally, let M denote the number of histogram bins
extracted from the features by some quantization method. The
target model is then represented as an M -dimensional his-
togram q ∈ RM , acquired by spatially weighing the his-
tograms corresponding to the target using a Gaussian kernel
profile k(·):

qm = C
∑
i,j

k(∥x⋆
ij∥2)δ[b(f⋆ij)−m)] (1)

where C = 1/
∑

ij k(∥x⋆
ij∥

2), and b(·) ∈ 1, . . . ,M maps its
argument to a histogram bin index.

Respectively, the target candidate model representation at
spatial location y is denoted as p(y) and formulated as:

pm(y) = Ch

∑
ij

k(∥y − xij

h
∥2)δ[b(fij)−m] (2)

where Ch = 1/
∑

ij k(∥
y−xij

σ ∥2) is a normalization constant
arising from the condition that

∑M
m=1 pm(y) = 1, σ is the

kernel radius and i, j index the coordinates corresponding to
the last known position of the target. The similarity between
the resulting histogram representations can be measured using
the Bhattacharyya coefficient, which ultimately leads to the
Mean Shift update vector to find the target’s new position.

3.2. Convolutional Bag-of-Features based Tracking

Similar models can be obtained using a Bag-of-Features
(BoF) based quantization method on features extracted by
a Convolutional Neural Network [12]. Let c ∈ RM×C be
M codeword feature vectors, one for each of the M bins
of the histograms. The feature vectors f ∈ RH×W×C can
be quantized into histogram bins by assigning each feature
vector to the bin with whose codeword it is most similar. To
avoid harsh binary representations, the similarity between
each feature vector and each codeword can be used instead,
provided that the histograms are subsequently normalized to
sum up to 1. Thus, memberships g ∈ RH×W×M are cre-
ated, indicating the similarity of each feature vector in f with
each of the codewords c. Let h ∈ Rh×w×M denote these
histogram representations, whose spatial dimensions in the
general case are different than those of the original feature
vectors. For example, from an original input volume one
histogram can be extracted by averaging the memberships at
all spatial locations. In the case of Mean Shift, the binary
memberships are spatially weighted by a Gaussian kernel.

Thus, three main components are required for the extrac-
tion of BoF histogram representations. First, a similarity mea-
sure to extract the memberships of each feature vector in the
input volume with each of the codewords. Secondly, a mem-
bership normalization method, such as l1 normalization. And
finally, a membership averaging method, to produce the final
histogram which should combine the memberships from all
spatial locations. In terms of convolutional neural networks
this can be translated into first extracting memberships using
a Radial Basis Function (RBF) layer, which first computes the
memberships as the Euclidean similarity of each input feature
vector with each of the codewords and subsequently normal-
izes these memberships by their sum over all codewords. For-
mally, let gij,m denote the membership of the feature vector

8376



at spatial location {i, j} to the m-th codeword, then its mem-
berships are computed as:

gij,m =
exp(−∥fij − cm∥22)∑M
n=1 exp(−∥fij − cn∥22)

(3)

Alternatively, the similarity between each input feature
vector to each codeword may be measured as their dot-
product (or cosine similarity if they are l1-normalized). This
directly translates into using a traditional convolutional layer
where the filters act as codewords. The similarity between all
codewords and all input vectors is computed by the layer’s
operation if the filters are not flipped (i.e., cross-correlation),
as is typical. In this case the memberships can be computed
as:

gij,m =
|cTm · fij |∑N
n=1 |cTn · fij |

(4)

where the absolute value of the dot product is used to enforce
similarity metric properties for Equation (4).

Finally, histograms may be extracted by averaging over
the spatial locations of the computed memberships:

h =
1

H ·W

H∑
i=1

W∑
j=1

gij (5)

This is translated to a global average pooling operation in
terms of neural network components. The histogram extrac-
tion process is illustrated in Figure 1. To maintain spatial

Σx

Fig. 1: Summarization of the histogram extraction process.
Each feature vector in the original input volume of size 3 ×
3 × 9 is compared against each of the 4 × 9 codewords, and
memberships of size 3×3×4 are extracted. After an average
pooling operation of size 3 × 3, a single histogram of size
1× 1× 4 is extracted.

information, which is crucial in tracking tasks, multiple his-
tograms can be extracted by averaging the memberships over
local regions. For example, four histograms can be extracted
by dividing the spatial locations into a 2 × 2 pooling grid.
This can be achieved by using (strided) local pooling layers.
Depending on the size of the pooling grid and the stride, this
process can approximate the spatial gaussian weighting used
in MS, as feature vectors lying on the edges will contribute
to fewer histograms than feature vectors lying in more central
positions.

The more histograms used, the more spatial information is
maintained but more comparisons are required between target
histograms and candidate histograms. The linear approxima-
tion of the BoF model introduced has the added benefit that it
is much faster than its non-linear counterpart, which is also a
desirable feature in tracking tasks.

To track a target T , first a target model hT is extracted
as described. Then, given a new image frame, a candidate
region C is extracted from an area around the previous target
location, and modeled similarly as a candidate model HC . For
the candidate model, the same pooling grid as the one used for
the extraction of the target model is used, e.g., H ×W in the
case of one global histogram for the target, or n × n in case
of multiple histograms for different spatial locations of the
target. The candidate region is chosen to be larger than the
region corresponding to the target, thus producing a volume
of histograms corresponding to various spatial locations.

Finally, the target histograms are compared against the
candidate histograms using the χ2 distance. For the case of
one target histogram, the distances between the target his-
togram hT ∈ RM and each of the candidate histograms
HC ∈ RK×L×M is given by:

dkl,m =

M∑
m=1

(HC
kl,m − hT

m)2

HC
kl,m + hT

m

. (6)

for k = 1, . . . ,K and l = 1, . . . , L. The distances are then
converted to similarities as follows:

skl,m =
exp(−dkl,m)∑M
n=1 exp(−dkl,n)

. (7)

In the case of the target model consisting multiple his-
tograms, all histograms must be compared to the histograms
corresponding to the candidate region in a convolutional fash-
ion, and the similarity should be averaged over the target his-
tograms. Figure 2 illustrates an example of this convolu-
tional way of computing the similarities between multiple his-
tograms.

After the similarities have been computed, tracking is sim-
ply a matter of finding the position at which the maximum
similarity is achieved and projecting it back to the original
image. To capture variations in scale, a scale pyramid is
constructed from the candidate region and forward passed
through the network as a single batch for efficiency. Varia-
tions in scale and large displacements are discouraged, using
a penalty value and linearly combining the output with a co-
sine window respectively.

4. EXPERIMENTAL STUDY

Following [8], we use an AlexNet-like base architecture for
our network, keeping only three convolutional layers and
adding an LBoF [12, 13] layer at the end. The total stride of
the network is 8. To extract target histograms, we crop the

8377



(a)

(b)

Fig. 2: (a) Candidate and target histograms (left and right re-
spectively), extracted from convolutional feature vectors. (b)
Different steps of comparisons between the target and candi-
date histograms. Purple blocks denote the position of the tar-
get histograms, overlayed on top of the candidate histograms
to extract a single similarity value by averaging the similari-
ties between the histograms of each overlapping grid cell.

region around the target including some context and resize
the crop to be of fixed size 127 × 127 while maintaining the
aspect ratio of the target. For the candidate histograms, we
similarly resize the candidate region and crop an area of fixed
size 255 × 255 around the previous location of the target.
We train the network on the ILSVRC2015 VID dataset [14],
learning the codewords of the LBoF layer from scratch. Fol-
lowing [9], we use the same validation set to stop the training
process.

For evaluation, we use the OTB50, OTB2013, OTB100
[15, 16], and UAV123 datasets [17]. We compare our method
against provided results from the SAMF [18], Struck [19],
DSST [20], OAB [21], TLD [22], and KCF [23] trackers. We
also compare our method against the more recently published
SiamFC and CFNet [8, 9] and DCFNet [10] trackers when
possible. The results for the One Pass Evaluation (OPE)
on the UAV123 dataset are summarized in Figure 3. The
proposed Convolutional Histogram Tracker (CHT) tracker
achieves a precision score of 69.7% at pixel threshold 20,
and a success AUC score of 48.5%, surpassing the compared
trackers. By inspecting the attributes of the dataset, we ob-
serve that CHT surpasses all other trackers by a large margin
on videos with Viewpoint Change and Aspect Ratio Change
attributes, a feature that is inline with our hypotheses that
histograms can more adeptly handle viewpoint changes.

The results for the OTB50, OTB2013 and OTB100 results
are presented in Table 1. CHT achieves the best precision
(71.7%) on the OTB50 dataset as well as challenging perfor-
mance on the OTB2013 and OTB100 datasets. On the OTB
datasets, our tracker achieves an average of about 120 frames
per second using an NVIDIA GTX1080 Ti graphics card and
an Intel i7-6900K CPU @ 3.20GHz CPU. On the same ma-
chine, its most competitive contender, SiamFC, runs at about
60 FPS. On an NVIDIA Jetson TX2 embedded module, our
tracker can run at about 25 FPS.

(a) (b)

Fig. 3: (a) Precision curves at various thresholds for the
UAV123 dataset. (b) Success curves at various overlap thresh-
olds for the UAV123 dataset.

5. CONCLUSIONS

We have presented a novel tracker based on convolutional
neural networks and a fully learnable Bag-of-Features module
for histogram extraction. Based on the success of the Mean
Shift algorithm, which uses color histograms, we hypothe-
size that using histograms of convolutional features instead
of convolutional features can benefit the tracking task. Ex-
tensive experiments on multiple object detection benchmarks
validate our assumptions. Finally, our tracker can run at real-
time speeds even on embedded systems.

6. ACKNOWLEDGMENTS

This project has received funding from the European Unions
Horizon 2020 research and innovation programme under
grant agreement No 731667 (MULTIDRONE). This publica-
tion reflects the authors views only. The European Commis-
sion is not responsible for any use that may be made of the
information it contains.

7. REFERENCES

[1] Danai Triantafyllidou, Paraskevi Nousi, and Anastasios
Tefas, “Fast deep convolutional face detection in the

Tracker OTB50 OTB2013 OTB100
Precision Success Precision Success Precision Success

CHT 71.7 51.6 79.5 58.9 76.1 57.1
SiamFC 69.2 51.6 80.9 60.7 77.1 58.2
CFNet 70.2 53.0 80.7 61.1 74.8 56.8
DCFNet 68.3 50.9 79.5 62.2 75.1 58.0
SAMF 63.2 45.6 77.0 56.6 74.3 53.5
Struck 50.2 36.6 64.1 47.4 58.4 42.9
DSST 62.5 41.1 73.7 50.3 69.3 47.0
KCF 61.1 40.3 74.0 51.4 69.5 47.7
OAB 37.6 27.3 50.7 37.0 49.0 36.6
TLD 42.9 32.2 55.3 40.7 54.6 40.6

Table 1: Precision and success scores for the OTB datasets.

8378



wild exploiting hard sample mining,” Big data research,
vol. 11, pp. 65–76, 2018.

[2] David S Bolme, J Ross Beveridge, Bruce A Draper, and
Yui Man Lui, “Visual object tracking using adaptive cor-
relation filters,” in Computer Vision and Pattern Recog-
nition (CVPR), 2010 IEEE Conference on. IEEE, 2010,
pp. 2544–2550.

[3] Tomas Vojir, Jana Noskova, and Jiri Matas, “Robust
scale-adaptive mean-shift for tracking,” Pattern Recog-
nition Letters, vol. 49, pp. 250–258, 2014.

[4] Dorin Comaniciu, Visvanathan Ramesh, and Peter
Meer, “Real-time tracking of non-rigid objects using
mean shift,” in Computer Vision and Pattern Recog-
nition, 2000. Proceedings. IEEE Conference on. IEEE,
2000, vol. 2, pp. 142–149.

[5] Han B. Nam, H., “Learning multi-domain convolutional
neural networks for visual tracking,” in The IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[6] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan,
and Michael Felsberg, “Eco: Efficient convolution op-
erators for tracking,” in CVPR, 2017.

[7] Silvio Savarese David Held, Sebastian Thrun, “Learning
to track at 100 fps with deep regression networks,” in
Conference Computer Vision (ECCV), 2016.

[8] Luca Bertinetto, Jack Valmadre, Joao F Henriques, An-
drea Vedaldi, and Philip HS Torr, “Fully-convolutional
siamese networks for object tracking,” in European con-
ference on computer vision. Springer, 2016, pp. 850–
865.

[9] Jack Valmadre, Luca Bertinetto, João Henriques, An-
drea Vedaldi, and Philip HS Torr, “End-to-end repre-
sentation learning for correlation filter based tracking,”
in Computer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on. IEEE, 2017, pp. 5000–5008.

[10] Qiang Wang, Jin Gao, Junliang Xing, Mengdan Zhang,
and Weiming Hu, “Dcfnet: Discriminant correlation
filters network for visual tracking,” arXiv preprint
arXiv:1704.04057, 2017.

[11] Olga Zoidi, Anastasios Tefas, and Ioannis Pitas, “Visual
object tracking based on local steering kernels and color
histograms.,” IEEE Trans. Circuits Syst. Video Techn.,
vol. 23, no. 5, pp. 870–882, 2013.

[12] Nikolaos Passalis and Anastasios Tefas, “Learning bag-
of-features pooling for deep convolutional neural net-
works,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2017, pp. 5755–5763.

[13] N. Passalis and A. Tefas, “Training lightweight deep
convolutional neural networks using bag-of-features
pooling,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–11, 2018.

[14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei, “ImageNet Large Scale Vi-
sual Recognition Challenge,” International Journal of
Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,
2015.

[15] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, “Online
object tracking: A benchmark,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2013, pp. 2411–2418.

[16] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, “Ob-
ject tracking benchmark,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 37, no. 9,
pp. 1834–1848, 2015.

[17] Matthias Mueller, Neil Smith, and Bernard Ghanem, “A
benchmark and simulator for uav tracking,” in European
conference on computer vision. Springer, 2016, pp. 445–
461.

[18] Jianke Zhu Yang Li, “A scale adaptive kernel correlation
filter tracker with feature integration,” in European Con-
ference on Computer Vision, Workshop VOT2014 (EC-
CVW), 2014.

[19] Philip H. S. Torr Sam Hare, Amir Saffari, “Struck:
Structured output tracking with kernels,” in Interna-
tional Conference on Computer Vision (ICCV), 2011.

[20] P. Martins J. Henriques, R. Caseiro and J. Batista, “Ex-
ploiting the circulant structure of tracking-by-detection
with kernels,” in European Conference on Computer
Vision (ECCV), 2012.

[21] Grabner M. Bischof H. Grabner, H., “Real-time track-
ing via on-line boosting,” in Proceedings of the British
Machine Vision Conference (BMVC), 2006.

[22] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas,
“Face-tld: Tracking-learning-detection applied to
faces,” pp. 3789–3792, 2010.

[23] João F Henriques, Rui Caseiro, Pedro Martins, and
Jorge Batista, “High-speed tracking with kernelized cor-
relation filters,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
2015.

8379


		2019-03-18T11:04:41-0500
	Preflight Ticket Signature




