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ABSTRACT

Here, face images of a specific age class are translated to images of
different age classes in an unsupervised manner that enables train-
ing on independent sets of images for each age class. In order to
learn pairwise translations between age classes, we adopt the UNsu-
pervised Image-to-image Translation framework that employs Vari-
ational AutoEncoders and Generative Adversarial Networks. By
mapping face images of different age classes to shared latent repre-
sentations, the most personalized and abstract facial characteristics
are preserved. To effectively diffuse age class information, a pyra-
mid of local, neighbour, and global encoders is employed so that the
latent representations progressively cover an increased age range.
The proposed framework is applied to the FGNET aging database
and compared to state-of-the-art techniques and the ground truth.
Appealing experimental results demonstrate the ability of the pro-
posed method to efficiently capture both intense and subtle aging
effects.

Index Terms— face aging, adversarial training, latent space,
image-to-image-translation, pyramid

1. INTRODUCTION

Predicting the effects of aging on human face is challenging due to
the progressive, accumulative, and multi-factorial nature of the aging
process. In order to reliably predict face age progression (i.e., future
looks) and regression (i.e., previous looks), it is vital to maintain
personality, i.e., the unique characteristics of each face that make
the person recognizable. Face age progression and regression is
very useful for cross-age face recognition, can significantly assist
the search for missing or wanted persons, or be exploited for enter-
tainment related applications.

Great research effort has been devoted to face aging with impres-
sive results. The face aging framework presented in [1] comprises of
Recurrent Neural Networks (RNNs), which are trained on the aging
transformations between adjacent age classes. Since RNNs memo-
rize previous states, the aged faces are gradually generated and face
identity is preserved. The limitation of this approach is that it re-
quires face images of the same person for adjacent age classes in
order to train the RNNs. In [2], a model-based approach for face
aging is proposed that represents a face using three layers, namely
global, local, and texture layer. Face aging information from indi-
vidual layers is fused in order to effectively simulate aging.

∗This research has been financially supported by the General Secretariat
for Research and Technology (GSRT) and the Hellenic Foundation for Re-
search and Innovation (HFRI) (Scholarship Code: 81).

Age progression/regression can be perceived as the generative
task of creating face images that belong to different age ranges. Ex-
ploiting the tremendous capabilities of Generative Adversarial Net-
works (GANs) [3] is nowadays the state-of-the-art in face aging. In
[4], a Conditional Adversarial AutoEncoder (CAAE) is employed
for age progression/regression based on a face manifold. In order to
preserve personality, CAAE firstly maps face images to latent rep-
resentations, which are subsequently projected to the face manifold
conditional on age. Traversing on the manifold generates transitions
across age classes and produces age progressed or rejuvenated face
images. In [5], age conditional GANs are utilized for age progres-
sion along with a latent vector optimization constraint. In order to
preserve personality, a face recognition neural network is incorpo-
rated into the training process. The approach in [6] employs GANs
for face aging and incorporates face verification and age estimation
techniques into the objective function in order to enhance aging ef-
fects and preserve personality. Moreover, a pyramid of facial feature
representations estimated at multiple scales is fed to the discrimi-
nator in order to better capture subtle aging transformations. Other
GAN-based approaches for face aging are presented in [7, 8, 9, 10],
where effort has been devoted to identity preservation.

In this paper, we investigate the age progression/regression prob-
lem from the perspective of generative modelling. The main contri-
butions are as follows:

1. A novel framework is built by addressing face aging as an
unsupervised image-to-image translation problem, therefore
eliminating the need to learn exact aging patterns across age
classes as well as prerequisite paired face images of the same
person at different age classes.

2. Personality is preserved across age transitions by forcing face
images belonging to different age classes to be mapped to
shared latent representations.

3. To facilitate transitions between age classes, the proposed
Pyramid Aging-GAN framework employs a pyramid shared
latent space for both encoding and decoding, the benefit of
which is demonstrated by experimental results.

4. Pyramid Aging-GAN accomplishes realistic results for both
age progression and rejuvenation, simultaneously.

The proposed framework is described in detail in Section 2. In
Section 3, the experimental evaluation of the Pyramid Aging-GAN is
conducted. Finally, Section 4 concludes the paper and recommends
future work.

2. PROPOSED FRAMEWORK

Here, we analyze the pipeline of the proposed Pyramid Aging-GAN
framework. To perform image-to-image translation, we adopt the
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powerful UNsupervised Image-to-image Translation (UNIT) frame-
work [11] and learn pairwise translations between age classes. In
order to infer the joint distribution of images in different age classes
based on their marginal distributions, two vital assumptions are
made: the shared latent space assumption and the cycle consistency
assumption. According to the first assumption, a tuple of images
xn corresponding to different age classes Xn, n = 1, . . . , N (i.e.,
the input to the proposed framework) is mapped to a shared latent
representation z in a shared latent space. This is essential in order
to capture correspondences between age classes. According to the
cycle consistency assumption, a cycle consistency mapping should
exist so that each image that originally belongs to a specific age
class Xn can be reconstructed after being translated from age class
Xn to a different age class Xk and then, translated back to age class
Xn, i.e., after the translation cycle Xn → Xk 6=n → Xn.

The proposed framework consists of Variational AutoEncoders
(VAEs) [12, 13] and GANs [3]. For each age class, a VAE and a
GAN are jointly trained in a VAE-GAN [14]. In VAE-GANs, the
decoder is adversarially trained against the GAN discriminator. Each
age class is represented by a VAE-GAN, which consists of three sub-
networks: an encoding network E, a generative network G, and an
adversarial discriminator D. V AEn for age class Xn consists of
the encoder-generator pair {En, Gn}, while GANn consists of the
generator-discriminator pair {Gn, Dn}. All sub-networks E, G,
and D are implemented by Convolutional Neural Networks (CNNs),
while E and G also employ residual blocks [15].

The shared latent space constraint is implemented by enforcing
a weight sharing scheme to encoders E and generators G. In order
to preserve personality, weight sharing is enforced to the layers that
bear the most high-level semantic information. Due to the hierarchi-
cal way the deep neural networks learn feature representations, these
high-level layers are the last few layers of encoders and the first few
layers of decoders.

Here, extending [16], a weight sharing scheme is employed,
which follows a pyramid structure. Each encoder E is regarded as
the ensemble of three sub-encoders: E = EG ◦ EA ◦ EL. The
first layers of each encoder E, denoted by EL, capture local, low-
level information related to the specific age class and do not share
any weights. The intermediate layers of encoder E, denoted by EA,
have tied weights with the corresponding layers of the encoder that
belongs to an adjacent age class. Therefore, they fuse information
from the neighbourhood of each age class. Shared intermediate en-
coder layers EA map pairs of images xn and xn+1 that belong to
adjacent age classes to an intermediate neighbour shared latent rep-
resentation zn:n+1. Subsequently, all intermediate neighbour shared
latent representations are mapped to a global shared latent represen-
tation z1:N by encoder layers EG, which have tied weights across
all age classes. This way, the obtained shared latent representation
z1:N progressively fuses information from all age classes.

For a given age class Xk, the intermediate layers EA,k will
share weights with the corresponding layers of the precedent age
class Xk−1 or the following age class Xk+1 if age progression or
regression is performed. More specifically, for translation to age
class Xl, age class Xk is coupled with its precedent class if l < k
and with its following class if l > k. When l = k and reconstruc-
tion is performed, age class Xk is coupled with its precedent class if
k ≤ N/2, otherwise it is coupled with its following age class.

Subsequently, the final shared latent code z1:N is decoded by
generators G, which also follow a corresponding pyramid weight
sharing structure. The generator G for each age class Xn is regarded
as the ensemble of three sub-generators: G = GL ◦GA ◦GG. The
first layers of G, namely GG, are tied across all age classes, the in-

termediate layers GA are shared between adjacent age classes, and
the last layers GL are specific to each age class. GG can be regarded
as a common high-level generation function that maps global shared
latent representation z1:N to an intermediate decoded global shared
high-level representation z̃1:N that holds the most abstract informa-
tion fused from all age classes. GA maps intermediate decoded
global shared representation z̃1:N to an intermediate decoded neigh-
bour shared representation z̃n:n+1, which holds information for the
neighbourhood of the adjacent age classes Xn and Xn+1. For each
age class Xn, GL can be regarded as a low-level generation func-
tion that further decodes the intermediate decoded neighbour shared
representation z̃n:n+1 to generated images x̃n ∈ Xn.

The information flow for the pyramid encoding and decoding
scheme of the proposed Pyramid Aging-GAN framework is illus-
trated graphically in Figure 1. During encoding, information is accu-
mulated to the shared latent representations from local to neighbour
to global. On the contrary, during decoding, decoded information
grows progressively from global to neighbour to local.

Fig. 1: Information flow for the encoding and decoding scheme
in the Pyramid Aging-GAN. For encoding, information progresses
from local to neighbour to global, while the reverse order applies for
decoding.

The generator Gn is utilized to either reconstruct input images
xn in age class Xn or to translate input images xk, k 6= n, n =
1, . . . , N to age class Xn. The reconstruction stream generates the
images x̃n→n

n ∈ Xn, while the translation stream generates the im-
ages x̃k→n

k ∈ Xn. In order to translate image xn to a different age
class, e.g., age class Xn+1, the latent code z1:N is decoded by gen-
erator Gn+1 which translates latent codes to age class Xn+1 and
the translated image x̃n→n+1

n is obtained. By doing so, the frame-
work learns the bidirectional translations among all N age classes
simultaneously. To produce realistic translated images, the genera-
tors Gn, n = 1, . . . , N are trained against adversarial discrimina-
tors. The discriminator Dn is fed by both original images xn ∈ Xn

as well as images of different age classes that are translated to age
class Xn in order to learn to discriminate them. In each GANn,
Gn tries to fool Dn by generating images that resemble the original
images in age class Xn, while Dn tries to understand which images
are original and which are generated. A few layers of discriminators
Dn also have tied weights across age classes in an attempt to capture
similarities between age classes.

2.1. Objective function

The adversarial training of Pyramid Aging-GAN can be regarded as
a two player min-max game, where the team of encoders and gen-
erators is trained against the team of adversarial discriminators. The
first team except of defeating the second team has to minimize the
VAE loss, the cycle consistency loss, and the total variation loss.
The inclusion of total variation in the loss function aims at smooth-
ing the noise due to steep differences between pixel values and has
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been proved efficient in removing the ghosting artifacts of generated
images for face aging [4, 7, 6].

The objective function for translations from age class Xk to all
other age classes Xl, l = 1, . . . , N, l 6= k is given by

min
Ek,El,Gk,Gl

max
Dk,Dl

{
LV AEk (Ek,Gk) + LGANl(Ek,Gl,Dl)

+ LCCk (Ek,Gk,El,Gl) + LTV l(Gl)
} (1)

where LV AEk corresponds to the objective function of V AEk

training. The final shared latent code zk,1:N is included in V AEk

training. The intermediate steps of pyramid encoding for obtaining
zk,1:N are only indirectly penalized. V AEk training for age class
Xk aims at minimizing the loss function:

LV AEk (Ek,Gk) = λ0 KL (qk(zk,1:N |xk) || pp(z))

− λ1 Ezk,1:N∼qk(zk,1:N |xk)

[
log pGk (x̃

k→k
k |zk,1:N )

]︸ ︷︷ ︸
‖xk−x̃k→k

k
‖`1

. (2)

The Kullback-Leibler (KL) divergence in Eq. (2) penalizes any
deviation of the distribution qk of the latent code from the prior zero
mean Gaussian distribution pp(z) = N (z|0, I). Distributions pGn

for n = 1, . . . , N are Laplacians. Minimizing the negative log-
likelihood term is equivalent to minimizing the absolute distance
between image xk and the reconstructed image x̃k→k

k . Hyper-
parameters λ0 and λ1 control each term of the LV AEk objective
function.

In Eq. (1), LGANl penalizes the image translation stream from
age class Xk to age classes Xl, l = 1, . . . , N, l 6= k. The objective
function of GAN training is given by:

LGANl(Ek,Gl,Dl) = λ2 Exl∼pxl

[
logDl(xl)

]
+ λ2 Ezk,1:N∼qk(zk,1:N |xk)

[
log
(
1−Dl(Gl(zk,1:N ))

)] (3)

where λ2 controls the impact of generative loss for age class Xl. In
the experiments, the same value of hyper-parameter λ2 was set for
all age classes Xn, n = 1, . . . , N .

In Eq. (1), LCCk penalizes the cycle consistency loss for
age class Xk. For the translation cycle Xk → Xl → Xk,
l = 1, . . . , N, l 6= k, the objective function for the cycle con-
sistency constraint is:

LCCk (Ek,Gk,El,Gl) = λ3 KL (qk(zk,1:N |xk) || pp(z))

+ λ3 KL (ql(zl,1:N |x̃k→l
k ) || pp(z))

− λ4 Ezl,1:N∼ql(zl,1:N |x̃k→l
k

)

[
log pGk (xk|zl,1:N )

] (4)

In Eq. (4), the KL divergence terms penalize any deviation of the
distribution qk of the latent codes of the translation stream Xk → Xl

and the distribution ql of the translation stream Xl → Xk from
the prior distribution pp(z). The negative log-likelihood term forces
the twice translated image x̃k→l→k

k to resemble the input image xk.
The hyper-parameters λ3 and λ4 control the two terms of the cycle
consistency constraint.

3. EXPERIMENTS

3.1. Dataset

The proposed framework is trained on a dataset that comprises of im-
ages collected from the Cross-Age Celebrity Dataset (CACD) [17]
and the UTKFace [4] dataset. Similar to [7, 16], we define 7 age

classes: 0-10, 11-18, 19-29, 30-39, 40-49, 50-59, and 60+ years
old. The oldest person belonging to the last age class is 80 years
old. Approximately, the same number of face images belongs to
each age class. Both genders are equally represented in each age
class. In total, 21,267 face images comprise the training set. Similar
to [4, 1, 6, 9], the proposed framework is evaluated on the FGNET
dataset [18]. The FGNET dataset consists of 1002 images of 82 sub-
jects, aging from 0 to 69.

3.2. Experimental evaluation

Age progression and regression results achieved by the proposed
Pyramid Aging-GAN are depicted in Figure 2. Seven input face
images from the FGNET dataset and the generated faces for the
seven age classes are presented. The red boxes indicate the gen-
erated images that belong to the ground truth age class of each input
face. Visual results demonstrate that Pyramid Aging-GAN succeeds
to generate realistic images illustrative of the progressive effects of
aging, while preserving personalized face features. Remarkably, the
achieved age progression/regression is compatible to each person’s
gender, although no gender information is included to the frame-
work. This can be attributed to the ability of the proposed frame-
work to capture the most abstract face aging effects appropriate to
both genders. For example, in the last row of Figure 2, the per-
son’s moustache is removed in the age class 0-10. The moustache
is slightly visible for age class 11-18, while for age class 30-39 a
beard appears in the person’s face. Beard and moustache are related
to person’s gender as well as to the depicted age class. All aging ef-
fects maintain the personalized characteristics of the input face im-
age. The training of the first, second, and last age class is stopped
at an earlier iteration due to earlier collapse compared to the other
age classes. The earlier collapse of training for those extreme age
classes compared to the intermediate classes may be attributed to the
drastic face alterations achieved for translations to these age classes,
e.g., from a child to an adult and from a middle-aged person to an
elderly person, and vice versa.

Input 0-10 11-18 19-29 30-39 40-49 50-59 60+

Fig. 2: Age progression and regression achieved by the Pyramid
Aging-GAN framework for sample images of FGNET. The first col-
umn depicts input faces, and the rest columns depict results for both
age progression and regression. The red boxes indicate the generated
images that belong to the ground truth age class of each input image.
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Comparison to ground truth: In Figure 3, we compare the face
images generated by the Pyramid Aging-GAN to the ground truth
images of the FGNET dataset. More specifically, generated samples
of FGNET images translated to different age classes are presented
and compared to the ground truth images of the persons at that spe-
cific age interval. The proposed framework achieves realistic results,
similar to the ground truth images, for both age progression and re-
juvenation tasks.

Input Ours Ground truth

5033 50-59

1331 11-18

1740 11-18

Input Ours Ground truth

38 1811-18

1848 11-18

6353 60+ 3151 30-39

25 40-49 40

1242 11-18

Input Ours Ground truth

Fig. 3: Comparison to the ground truth images of FGNET.

Comparison to prior works: The performance of the proposed face
aging framework in producing realistic faces at different age inter-
vals is also compared to prior works. Our method is compared to
[16, 4, 1, 7, 9] for age progression and to [16, 4] for age regres-
sion. We use the same input images and perform age progression
and regression. The comparative demonstration is shown in Figure
4. It can be seen that the face aging effects for age progression are
more intense compared to those of the competitive methods. By
comparing the results of the proposed method and those in [16], it
is attested that the inclusion of the pyramid encoding and decoding
scheme enabled the proposed framework to more effectively capture
the age-related alterations of face characteristics. For age rejuvena-
tion, the resulted face images are also appealing when compared to
the rejuvenation results in [4]. The proposed method succeeds ex-
ceptionally in maintaining personality, especially when compared to
the generated images of the method in [1].

Input Proposed [16] [4] [1] [7] [9]

29 60+ 60+ 61-70 61-80 60+60+

35 60+ 60+ 61-70 61-80 60+60+

Input Proposed [16] [1] [7] [9]

25 40-49 40-49 41-50 40-49 40+

Input Proposed [16] [4]

45 60+ 60+ 61-70

Input Proposed [16] [4]

45 0-10 0-10 0-5

30 0-10 0-10 0-5

Fig. 4: Comparison of age transitions generated by the Pyramid
Aging-GAN and other methods applied to images of FGNET.

Quantitative comparisons: To quantitatively compare the Pyramid
Aging-GAN with our previous work in [16], we employ the Incep-
tion Score (IS) [19] as an evaluation metric. Since our goal is to eval-
uate the quality of generated face images, IS is computed based on
a deep neural network trained on faces, namely the pre-trained VGG
Face Model [20]. In Table 1, this metric, namely the VGG Face
score, is calculated for the generated images by Pyramid Aging-
GAN and compared to those generated by the method in [16], and
the ground truth FGNET images. The best values for each row of
Table 1 are indicated in bold. The proposed method consistently
achieves higher VGG Face scores than [16]. Therefore, it generates

face images of better visual quality and benefits from the incorpo-
ration of the pyramid encoding and decoding scheme. Moreover, as
depicted in Table 2, the images generated by the proposed frame-
work achieve smaller mean absolute error (in years) for age estima-
tion compared to those generated by the method in[16], using the
pre-trained age estimation model in [21]. The best values for each
row of Table 2 are indicated in bold.

VGG Face score
Reconstruction Proposed [16] Ground truth

X1 → X1 14.22± 3.10 13.46± 2.41 17.90± 2.88
X2 → X2 15.52± 2.27 14.83± 2.11 18.59± 2.40
X3 → X3 8.76± 1.34 8.08± 1.45 12.17± 1.53
X4 → X4 6.06± 1.17 6.18± 0.88 7.11± 0.46
X5 → X5 3.78± 0.60 3.74± 0.70 4.25± 0.62
X6 → X6 1.44± 0.45 1.42± 0.45 1.49± 0.49
X7 → X7 1.32± 0.45 1.32± 0.45 1.33± 0.47

Xk → Xk, k ∈ 1, . . . , 7 29.16± 3.59 26.60± 3.59 42.02± 4.31

Translation Proposed [16] Ground truth
Xk 6=1 → X1 9.11± 2.36 7.39± 0.91 -
Xk 6=2 → X2 22.78± 3.29 25.81± 2.52 -
Xk 6=3 → X3 37.14± 4.41 29.24± 3.51 -
Xk 6=4 → X4 34.42± 3.12 28.29± 2.90 -
Xk 6=5 → X5 31.07± 3.48 23.79± 2.62 -
Xk 6=6 → X6 32.40± 2.46 26.96± 2.58 -
Xk 6=7 → X7 31.54± 1.49 20.65± 1.42 -

Xk → Xl, k 6= l,
61.90± 20.30 45.78± 15.63 -

k, l ∈ 1, . . . , 7

Table 1: VGG Face score, i.e, Inception Score [19] evaluated on
the pre-trained VGG Face Model [20]. The score admitted by the
proposed method is compared to the score admitted by [16] and the
score of the ground truth FGNET images.

Age estimation results using [21]
Proposed [16]

Reconstruction 12.281 14.384
Regression 11.833 13.965
Progression 18.427 18.560

All translations 17.161 17.678

Table 2: Mean absolute error in years for age estimation evaluated
on the reconstructed, age progressed, and regressed images gener-
ated by the proposed method and the method in [16], using the pre-
trained age estimation model in [21].

4. CONCLUSION AND FUTURE WORK

A novel approach has been proposed that addresses face age pro-
gression and regression as an image-to-image translation problem
and learns the pairwise translations between face images belonging
to different age classes. To meet this goal, the UNIT framework [11]
has been employed and extended to multiple age classes. In order
to better capture the effects of aging on face characteristics, we have
employed a pyramid of local, neighbour, and global encoders so that
the latent representations progressively encapsulate semantic infor-
mation. Shared latent representations have been fed to GANs, each
of which is trained on a single age class and utilizes low-level infor-
mation to generate images that resemble the original images of the
age class. The proposed Pyramid Aging-GAN framework succeeds
to capture both subtle and intense face aging effects and perform ap-
pealing age progression and regression simultaneously. Future work
will focus on facilitating the transitions between distant age classes,
since they cause the most drastic aging effects and reducing the blur
in the generated images.
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