
QUASI BLACK HOLE EFFECT OF GRADIENT DESCENT IN LARGE DIMENSION:
CONSEQUENCE ON NEURAL NETWORK LEARNING

Anne Bouillard, Philippe Jacquet

Nokia Bell Labs

ABSTRACT

The gradient descent to a local minimum is the key ingredient
of deep neural networks learning techniques. We consider a
function Lm(.) in dimension n with a random set of m abso-
lute minima. When logm = o(n), we show that a gradient
descent from an initial random point quasi always ends on a
unique local minimum approximately at the centroid of the
absolute minima. This fake minimum acts like an absorbing
node, but its value by function Lm(.) can be far above the
values obtained by Lm(.) on the absolute minima and some-
times gives very bad coefficients for the neural network. For-
tunately in most cases the fake minimum leads to a neural
network with not so bad prediction, with an error rate of or-
der n−1/4. The only way to escape the fake minimum is to
start a new gradient descent from a new random point and we
show that finding a good initial point takes in average time
which is at least proportional to ebn/mn2 for some b > 0.

Index Terms— gradient descent, large dimension, stochas-
tic geometry

1. INTRODUCTION

Deep Neural Networks (DNN) have created a revolution in ar-
tificial intelligence [5, 6]. The list of their successful applica-
tions is so impressive that there is no need to stress the impor-
tance of this revolution. Clearly one can pretend that DNNs
have successfully passed the Turing test [2] in its perfection
in imitating and sometimes superceding human intelligence.
Beyond the euphoria around this incontestable breakthrough
one can start thinking about its limits.

Surprisingly the limit may lay in the intrication of ma-
chine learning with the machine. In short can a DNN mimic
a machine as well it can mimic a human intelligence? To be
clearer, can a DNN be trained to solve problem that a simple
algorithm would solve in an optimal way? We know that a
DNN is a Turing complete machine [12, 13] and any algo-
rithm can be implemented by suitably tuning the weights in
the neurons. But the question is not in programming a DNN
but in training and if so can we do it in a reasonable time and
complexity [9]?

Consider the problem of finding the maximum ofN num-
bers. A DNN with O(logN) layers involving 2N ReLUs

(Rectified Linear Units) can solve the problem by extrapo-
lating the DNN shown in Figure 1. There are Θ(N2) coeffi-
cients. An optimal DNN will use a divide-and-conquer strat-
egy and partition the N numbers into N/2 pairs, then N/4
pairs, etc. There are N !

2N
possibilities thusm = exp(N(logN−

log 2 − 1) + o(N)) absolute minima. The gradient de-
scent of the deep learning operates in a space of dimension
n = Θ(N2). Experiments show that the neural network
does not converge, or converges to a wrong minimum. In
fact insisting on the gradient descent, the convergence to an
absolute minimum takes an O(m) time which is more than
exponential in N . The aim of the paper is to attempt an
explanation of this phenomenon via a simplified model.

[x− y]+

[y − x]+

[x+ y]+

[−x− y]+

x

y

1

-1

1

-1

-1

1

1

-1

1/2

1/2

1/2

-1/2

max(x, y)

Fig. 1. NN for computing the maximum of two numbers.

1.1. DNN coefficients, gradient and invariant

A DNN made of k layers of respective size N,N1, . . . Nk

and can be represented by a sequence of rectangular matri-
ces M1, . . . ,Mk. Matrix Mi has dimension Ni−1×Ni with
N0 = N and N + k = 1. An input vector t of dimension N
produces a label f(t) defined by the following operations:

f(t) = t>M1I
+(a1)M2I

+(a2) · · · I+(ak−1)Mk (1)

where the ai are bias vectors of dimensionNi and with I+(a)
the operator which change each component xi of a vector x ∈
Rn of a vector into [xi + αi]

+ = max(xi + αi, 0) with a =
(α1, . . . , αn). To simplify our presentation we will hereafter
that all bias vectors are null as in figure 1.

8365978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

We can write the N0 × N1 + · · · + Nk−1 × Nk + Nk

coefficients of the matrix by a vector z ∈ Rn with n =
N0×N1+· · ·+Nk−1×Nk+Nk. We define f(t, z) the func-
tion f(t) applied to the test vector t when the coefficients of
the matrices M1, . . . ,Mk are defined by the vector z which
summarizes all the coefficients of the sequence of the matri-
ces in (M1, · · · ,Mk).

The principle of the DNN is at each vector test t we com-
pare the prediction f(t, z) with the ground truth label f̄(t),
the one we would get from a human expert as the principle of
supervised machine learning [10, 11]. The loss function can
be expressed as L(t, z) = (f(t, z)− f̄(t))2 or any increasing
function of it. Computing the gradient ∇L(t, z) with respect
to the coefficients vector z we update the later via the follow-
ing ”normalized” gradient descent step:

z← z− r 1

‖∇L(t, z)‖
∇L(t, z), (2)

where r is the learning rate. There are many variant of the
gradient descent, for more details see [4, 8, 3].

1.1.1. Homothetic invariants

If we define the DNN by M1I
+
N1

M2I
+
N2
· · · I+Nk−1

Mk,
clearly the DNN defined by M′1I

+
N1

M′2I
+
N2
· · · I+Nk−1

M′k
gives the same label function when M′i = τiMi where
(τ1, . . . , τk) is a tuple of strictly positive real numbers such
that τ1 · · · τk = 1. Similarly we still have the same label
function when M′i = ∆i−1Mi∆

−1
i where the ∆i are diago-

nal matrices with strictly positive coefficients on the diagonal
(assuming ∆0 = IN and ∆k = 1.

Going back to the vector notation of DNN, the set of vec-
tor z which provide an homothetic equivalent of a vector z
is called the homothetic class of z. An homothetic class is a
topologically connected subset of Rn. There is a closed for-
mula (not given here) which expresses a function g(z) which
gives an unique element of the class of z.

Let Kn = g(Rn) be a Riemann variety of dimension
n−

∑
iNi − k+ 1 where DNNs coefficients are represented

without homothetic invariant.

1.1.2. Permutation invariant

Another invariant is in the permutation of the lines and
columns in the matrices M1, . . . ,Mk. Indeed let (J1, . . . ,Jk−1)
be a sequence of permutation matrices of respective size
N1 × N1, . . . , Nk−1 × Nk−1. We still have the same label
function if for all integers iM′i = Ji−1MiJ

−1
i (by default J0

and Jk are identity matrices). This defines the permutation
class of a vector z which corresponds to certain permutations
of its coefficients.

It is important to notice that the permutation class of a
vector z is not a topologically connected set, even combined
with the homothetic classes. There are m = N1! · · ·Nk−1!

possible permutations, and they map each vector z into sev-
eral mirror images z′. The multiplicity of the mirror images
will be the cause of the troubles we will notice in the gradient
descents. We notice that although m is large, it is not expo-
nential in n. Indeed log(m) = o(n) when n tends to infinity.

2. THE MODEL AND RESULT

In our model we will consider that the DNN is of no risk type,
that is, the label is a deterministic function of the test vector
t and that the function which produces this label is a DNN of
the same size. In other words, there exists a vector b which
produces the exact label, i.e. for every test vector t:

f̄(t) = f(t,b)

We notice that for simple algorithmic problems such as find-
ing the maximum, the DNN is implementable by a neural net-
work as long it has enough layers (log2N extrapolated from
Figure 1).

In the following, we will take the following simplifying
assumptions on the space and the distribution of the global
minima, and on the loss function:

1) We ignore the Riemannian aspect of Kn = g(Rn)
which we simply let equal to Rn.

2) The global minima b1, . . .bm are taken uniformly at
random in the hypercube : we forget that they are m mirror
images obtained by permutations of some coefficients, which
has in fact marginal importance. In fact one could take a more
general distribution for the b′is in Rn, such as Gaussian [7],
etc.

3) We modify the loss function. Clearly the bi are system-
atic roots of the loss function L(t, z) = (f(t, z)− f(t,b))2.
To simplify we skip the test vectors b and define Lm(z) =∏m

i=1 ‖z − bi‖2. The points bi are the global minima of the
function Lm(z). The result we will show also holds for any
increasing function of Lm(z). However, the result may not
hold for every function of the form f(z − b1, . . . , z − bm),
e.g. mini{‖z− bi‖}.

That way the problem is indeed within the stochastic ge-
ometry domain in large dimension.

Our problem is now generalized (although simplified)
to the problem of gradient descent in large dimension when
global minima are a Poisson point process. We will show the
following theorem:

Theorem 1 A local minimum exists at b∗ which is close to
the centroid of the points b1, . . . ,bm and with high probabil-
ity the gradient descent converges to it, assuming that n and
m tend both to infinity with logm = o(n).

In the following section we will provide a strategy of
proof. In the next section we will show some experiments
and discuss the impact on DNNs. Unfortunately due to the
lack of time the experiments have not yet produced on real
DNNs.

8366

3. STRATEGY OF PROOF

There are two main steps in the proof: first we show that the
gradient descent is nearly directed toward the origin with high
probability, and then that there is a local minimum in a neigh-
borhood of the origin. These two steps respectively involve
the computation of the gradient and the second derivative of
Lm:

1

Lm(z)
∇Lm(z) =

m∑
i=1

2

‖z− bi‖2
(z− bi),

1

Lm(z)
∇2Lm(z) =

m∑
i=1

2

‖z− bi‖2(
In −

2

‖z− bi‖2
(z− bi)⊗ (z− bi)

)
+

1

Lm(z)
∇Lm(z)⊗∇Lm(z),

where ⊗ is the tensor product.

3.1. The gradient analysis

We denote Dm(z) =
∑m

i=1
1

‖z−bi‖2 , and fist show that the
gradient is directed to the origin with high probability.

Lemma 1 For all c1 > 0 and for all z ∈ Kn there exists
b1 > 0 such that for all n and m with log(m) = o(n),

P

(
‖ 1

Lm(z)
∇Lm(z)−Dm(z)z‖ > c1m√

n

)
< me−b1n.

The proof, as most as most of the further proofs, is based on
the Chernoff bounds [1].

Now we consider a normalized gradient descent defined
by a sequence x0,x1, . . . in Kn such that

xk+1 = xk −
r

‖∇Lm(xk)‖
∇Lm(xk),

where r > 0, the step size, is fixed. For d > 0, let Bn(d)
denote the ball of radius d centered on origin.

Theorem 2 From any given starting point x0 ∈ Kn, and for
any d > 0 and for a step size r > 0 fixed, with probability
larger than 1 − O(

√
n
r me

−bn) the normalized gradient de-
scent ends in Bn(d

√
n).

Proof Let x0 /∈ Bm(d
√
n). Since for all z /∈ Bm(d

√
n),

‖z‖ ≥ d
√
n, from Lemma 1 the gradient ∇Lm(z) is colin-

ear to z + q with ‖q‖ ≤ c1
m√

nDm(z)
= O(c1

d ‖z‖). Since
c1 can be as small as possible, ∇Lm(z) is practically ori-
ented toward z with a negligible angle. Thus with probability
greater than 1−me−bn, we have x1 close to x0 − r x0

‖x0‖ . In
fact we have ‖x1‖ ≤ ‖x0‖ − r(1 − c1). Consequently we

need at most ‖x0‖−d
√
n

r(1−c1) = O(
√
n/r) steps to get to the black

hole Bm(d
√
n). Of course this happens if the conditions of

Lemma 1 apply at each step, which occurs with probability
higher than 1−O(

√
n
r me

−bn).

Corollary 1 For all sequences εn → 0, for all d > 0 and
r > 0 the gradient descent would not leave Bn(d

√
n + r)

before εn ebn

m steps with high probability.

3.2. Second derivative analysis

The previous results are resilient to generalization, for exam-
ple if ∇Lm(z) is proportional to

∑m
i=1

z−bi
‖z−bi‖αk

for some k
and α > 0.

The next results are probably more dependent of the ex-
pression of Lm(z) via the Euclidean norm ‖.‖.

Next, Lemma 2 shows that with high probability the
loss function is convex on a neighborhood of the origin, and
Lemma 3 that there exists a local minimum in the interior of
this neighborhood.

We define the inequality between n × n matrices A and
B: A � B if for all x ∈ Rn: 〈x,Ax〉 ≤ 〈x,Bx〉.

Lemma 2 There exists d1 > 0, c2 > 0 and b > 0 such that
for all z such that ‖z‖2 < d1n:

P (
1

Lm(z)
∇2Lm(z) � c2

m

n
In) ≥ 1−me−bn.

Lemma 3 For all d > 0 small enough there exists b > 0 such
with probability greater than 1−mne−bn we have ∀z ∈ Kn:

‖z‖ = d
√
n⇒ 〈∇Lm(z)z〉 > 0.

One can deduce the following theorem from these lemmas.
Note that the local minimum is unique since since the Lm(.)
is convex on Bn(d

√
n) as soon as d < d2.

Theorem 3 With probability greater than 1 − me−bn, the
function Lm(z) is strictly convex on the Bm(d1

√
n) and

for all 0 < d2 < d1 there exists a local minimum b∗ in
Bn(d2

√
n).

The consequence of this theorem is that the normalized gra-
dient descent stays in Bn(d

√
n) forever with high probability.

This is not necessarily the case for the supervised gradi-
ent descent which may experience unbounded jumps when xk

comes close to b∗.
Of course all these results have a trivial generalization

when

• the distribution of the coefficients are not uniform;

• E[bi] 6= 0 (i.e. the b∗ does not converge to zero);

• the coefficients in each bi have mild dependencies;

• the vectors bi’s have mild dependencies.

8367

And also a less trivial generalization when

• the norm is the general ‖ · ‖` for ` ≥ 2;

• the norm is ‖ ·‖∞ we have the component-wise conver-
gence.

4. EXPERIMENTATION

Figure 2 show the normalized gradient descent (see Equa-
tion (2)) in dimension 10 with m = 4 (top), m = 10 (bot-
tom) We have set r = 0.01. The number of global minima
is too small and the gradient descents converge to them. For
m = 10 the gradient descents end all on the quasi centroid
z∗. For the purpose of these figures we set Kn = [0, 1]n.

Fig. 2. Normalized gradient descents starting from three ran-
dom points for n = 10 and m = 4 (top) and m = 10 (bot-
tom), projected on the two first dimensions. Global minima
are in black, ending point are green.

5. CONSEQUENCE ON DNN PERFORMANCE

5.1. Tuning of the model to mirror image effect

To take into account the mirror image phenomenon we can
assume that a vector b is selected at random and that the m
mirror images bi are obtained by a subgroup of coordinate
permutations: bi = σi(b). The entropy of global minima
set then drops from O(nm) to O(n). Theorem 2 is still valid
since the lemmas which support it are all based on a single
probabilistic instance of bi:

P(
∣∣‖z− bi‖2 − ‖z‖2 − n/3

∣∣ > cn) < e−bn,

and then it is extended to

P(∀i :
∣∣‖z− bi‖2 − ‖z‖2 − n/3

∣∣ > cn) < me−bn

indifferently of the correlation between the bi’s.

5.2. Non zero average and zero average coefficients

The following part is extrapolated from the previous part
but is only conjectured since the transition from simplified
function loss gradient descent to actual random DNNs is
not yet proved. A DNN made of k layers of respective size
N,N1, . . . Nk and can be represented by a sequence of rect-
angular matrices M1, . . . ,Mk as shown in Equation (1). The
DNN accepts input vectors of dimension N .

Let us make again the simplified assumption that each co-
efficient of the matrices is produced at random but with a non
zero average E[b] 6= 0 and variance v(b).

According to our main results on gradient descent in large
dimension the learning should converge to a DNN whose ma-
trices are the average of the Mi, i.e. corresponding to the
label function

f∗(t) = t>E[M1]I+N1
E[M2]I+N2

· · · I+Nk−1
E[Mk].

We have E[Mi] = E[b]1Ni−1 ⊗ 1Ni where 1N is the
vector of dimension N made of 1’s. With the exception that
E[M1] is of the form u ⊗ 1N1

where u is a vector of di-
mension N because the permutations of the rows in the first
matrix are not permitted in the permutation class of b.

Using the Gaussian limit of the sum of independent vari-
able we arrive to the estimate that

f∗(t) = f(t)

(
1 +

1

E[b]
O(

k−1∑
i=0

√
v(b)/Ni)

)
.

In other words such a random DNN has an error rate of order
k

n1/4 . However, this is obtained via the hypothesis that the co-
efficients of the matrices are ”typical” of a random selection.

In the case where E[b] = 0 or when some E[M`] = 0
then there will be an unbounded error rate. This is unfortu-
nately the case with many algorithmic problem such as the
maximum extraction. It is easy to see that E[M1] = 0. To get
a satisfactory convergence to global minima, one has to wait
for an exponential of iterations.

Unfortunately due to lack of time we did not perform
enough simulations to validate those conjectures on large
scale DNN’s with large training sets.

6. CONCLUSION

We have shown that a gradient descent in large dimension
with a large number of global minima always ends to a fake
minimum located close to the centroid of the global minima.
This may explain why the DNNs have difficulties to repro-
duce the output of simple algorithms.

8368

7. REFERENCES

[1] Chernoff, H. (1952). A measure of asymptotic efficiency
for tests of a hypothesis based on the sum of obser-
vations. The Annals of Mathematical Statistics, 23(4),
493-507.

[2] Turing, A. M. (2009). Computing machinery and intelli-
gence. In Parsing the Turing Test (pp. 23-65). Springer,
Dordrecht.

[3] Mason, L., Baxter, J., Bartlett, P. L., & Frean, M. R.
(2000). Boosting algorithms as gradient descent. In Ad-
vances in neural information processing systems (pp.
512-518).

[4] Bertsekas, D. (1976). On the Goldstein-Levitin-Polyak
gradient projection method. IEEE Transactions on auto-
matic control, 21(2), 174-184.

[5] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learn-
ing. nature, 521(7553), 436.

[6] Schmidhuber, J. (2015). Deep learning in neural net-
works: An overview. Neural networks, 61, 85-117.

[7] Rasmussen, C. E. (2004). Gaussian processes in ma-
chine learning. In Advanced lectures on machine learn-
ing (pp. 63-71). Springer, Berlin, Heidelberg.

[8] Bottou, L. (2010). Large-scale machine learning with
stochastic gradient descent. In Proceedings of COMP-
STAT’2010 (pp. 177-186). Physica-Verlag HD.

[9] Kearns, M. J. (1990). The computational complexity of
machine learning. MIT press.

[10] Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007).
Supervised machine learning: A review of classification
techniques. Emerging artificial intelligence applications
in computer engineering, 160, 3-24.

[11] Weston, J., Ratle, F., Mobahi, H., & Collobert, R.
(2012). Deep learning via semi-supervised embedding.
In Neural Networks: Tricks of the Trade (pp. 639-655).
Springer, Berlin, Heidelberg.

[12] Graves, A., Wayne, G., & Danihelka, I. (2014). Neural
turing machines. arXiv preprint arXiv:1410.5401.

[13] Zaremba, W., & Sutskever, I. (2015). Reinforcement
learning neural turing machines-revised. arXiv preprint
arXiv:1505.00521.

8369

		2019-03-18T11:08:09-0500
	Preflight Ticket Signature

