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Abstract—1D Convolutional Neural Networks (CNNs) have 
recently become the state-of-the-art technique for crucial signal 
processing applications such as patient-specific ECG 
classification, structural health monitoring, anomaly detection in 
power electronics circuitry and motor-fault detection. This is an 
expected outcome as there are numerous advantages of using an 
adaptive and compact 1D CNN instead of a conventional (2D) 
deep counterparts.  First of all, compact 1D CNNs can be 
efficiently trained with a limited dataset of 1D  signals while the 
2D deep CNNs, besides requiring 1D to 2D data transformation, 
usually need datasets with massive size, e.g., in the “Big Data” 
scale in order to prevent the well-known “overfitting” problem. 
1D CNNs can directly be applied to the raw signal (e.g., current, 
voltage, vibration, etc.) without requiring any pre- or post-
processing such as feature extraction, selection, dimension 
reduction, denoising, etc. Furthermore, due to the simple and 
compact configuration of such adaptive 1D CNNs that perform 
only linear 1D convolutions (scalar multiplications and 
additions), a real-time and low-cost hardware implementation is 
feasible. This paper reviews the major signal processing 
applications of compact 1D CNNs with a brief theoretical 
background. We will present their state-of-the-art performances 
and conclude with focusing on some major properties.  
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I. INTRODUCTION 

Unlike the traditional Artificial Neural Networks (ANNs) 
Convolutional Neural Networks (CNNs) have the unique ability 
to fuse feature extraction and classification into a single learning 
body and thus eliminate the need for such fixed and hand-crafted 
features. Conventional deep CNNs (i.e. 2D CNNs) have been 
originally introduced to perform object recognition tasks for 2D 
signals such as images or video frames. They have recently 
become the de-facto standard for many Computer Vision and 
Pattern Recognition tasks within large data archives as they 
achieved the state-of-the-art performances [1]-[3]. However, the 
utilization of a conventional deep CNN for a 1-D signal 
processing application naturally requires a proper 1D to 2D 
conversion. For instance, recently, several researchers have 
attempted to use deep CNNs for fault diagnosis of bearings [4]-
[11]. For this purpose, they have used different conversion 
techniques to represent the 1D vibration signals in 2D. The most 
commonly used technique is to directly reshape the vibration 
signal into an n×m matrix called “the vibration image” [9]. 
Another technique was used in [5] where two vibration signals 
were measured using two accelerometers. After that, Discrete 

 
. 

Fourier Transform (DFT) was applied, and then the two 
transformed signals were concatenated into a matrix which can 
be fed to a conventional deep CNN. For electrocardiogram (ECG) 
classification and arrhythmia detection, the common approach is 
to use power- or log-spectrogram to convert each ECG beat to a 
2D image [12], [13]. However, there are certain drawbacks and 
limitations of using such deep CNNs. To start with it is known 
that they pose a high computational complexity that requires 
special hardware especially for training. Hence, 2D CNNs are not 
suitable for real-time applications on mobile and low-power/low-
memory devices. Moreover, proper training of deep CNNs 
requires a very large training dataset in order to achieve a 
reasonable generalization capability. This may not be a viable 
option for many practical 1D signal applications where the 
labeled data is scarce.  

To address these drawbacks, compact 1D CNNs have been 
recently developed to operate directly and more efficiently on 1D 
signals. They have achieved the state-of-the-art performance 
levels in several signal processing applications such as early 
arrhythmia detection in electrocardiogram (ECG) beats [15]-[17], 
on-site structural health monitoring [14], [18]-[22], motor fault 
detection [23] and real-time monitoring of high-power circuitry 
[24]. Additionally, two recent studies have utilized 1D CNNs for 
damage detection in bearings [25], [26]. However, in the latter 
study conducted by Zhang et al. [26], both single and ensemble of 
deep 1D CNN(s) were created to detect, localize, and quantify 
bearing faults. The deep configuration of 1D CNN used in this 
study consisted of 6 large convolutional layers followed by two 
fully connected layers. Other deep 1D CNN approaches have been 
recently followed by [27]-[29] for anomaly detection in ECG 
signals. These deep configurations share the common drawbacks 
of their 2D counterparts. For example, in [26], several “tricks” 
were used to improve the generalization performance of the deep 
CNN such as data augmentation, batch normalization, dropout, 
majority voting, etc. Another approach to tackle this problem is to 
use the majority of the dataset for training which may not be 
feasible at all in many practical applications. In the study [26] 
more than 96% of the total data is used to train the deep network. 
Hence the assumption that such a large set of training data will be 
available may hinder the usage of this method in practice. 
Therefore, in this study we shall draw the focus particularly on 
compact 1D CNNs with few hidden layers/neurons, and their 
applications to some major signal processing applications with the 
assumption that the labeled data is scarce and personalized or 
device-specific solutions are required to maximize the 
detection/identification accuracy. 
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II. 1D CNN OVERVIEW 

The conventional 2D CNNs are deep, biologically inspired 
feed-forward ANNs which constitute a simple model of 
mammalian visual cortex. Compact 1D CNNs [14]-[17], [18] - 
[25] are their counterparts that work on 1D signals on those 
applications which have a limited labeled data and high signal 
variations acquired from different sources (i.e., patients, devices, 
motors or circuits). To make the analogy simple two types of 
layers are proposed in compact 1D CNNs: 1) the so-called “CNN-
layers” where both 1D convolutions and sub-sampling (pooling) 
occur, and 2) Fully-connected layers that are identical to the 
layers of a typical Multi-layer Perceptron (MLP) and hence called 
as “MLP-layers”. The configuration of a 1D-CNN is determined 
by the following hyper-parameters: 

1) Number of hidden CNN and MLP layers/neurons. 
2) Filter (kernel) size in each CNN layer. 
3) Subsampling factor in each CNN layer. 
4) The choice of pooling and activation operators. 

Three consecutive CNN layers of a 1D CNNs are shown in Fig. 
1. In this sample illustration, the 1D filter kernels have size 3 and 
the sub-sampling factor is 2 where the kth neuron in the hidden 
CNN layer, l, first performs a sequence of convolutions, the sum 
of which is passed through the activation function, ݂ , followed by 
the sub-sampling operation. This is basically the predominant 
difference between 1D and 2D CNNs, where 1D arrays replace 
2D matrices for both kernels and feature maps. At the end, the 
CNN layers process the raw 1D data and “learn to extract” such 
features that can be used in the classification task performed by 
the MLP-layers. Therefore, both feature extraction and 
classification operations are fused into one process that can be 
optimized to maximize the classification performance. This is the 
main advantage of the 1D CNNs that can also provide a low 
computational complexity since the only costly operation is a 
sequence of 1D convolutions that are nothing but linear weighted 
sums of two 1D arrays. Such a linear operation during both 
forward and back-propagation can be executed efficiently in 
parallel.  

 
Figure 1: Three consecutive hidden CNN layers of a 1D CNN [17]. 

This is also an adaptive implementation since the CNN 
topology will permit the variations in the input layer dimension 
in such a way that the sub-sampling factor of the output CNN 
layer is tuned adaptively [3], [14]-[25]. Details regarding forward 
and back-propagation in CNN layers are covered in Appendix A. 

III. APPLICATIONS OF 1D CNNS 

There are several application domains where compact 1D 
CNNs have recently became the de-facto standard as they have 
achieved state-of-the-art performance with minimal 
computational complexity. Due to the space limitations, in this 
study we shall cover the following three application domains. 

A.  Applications on ECG Monitoring 

One of the earliest 1D CNN application was on ECG beat 
identification [16] where a “patient-specific” solution was 
proposed, i.e.,  for each arrhythmia patient a dedicated compact 
1D CNN was trained by using the patient-specific training data as 
illustrated in Figure 2. The purpose is to identify each ECG beat 
into one of the five classes: N (beats originating in the sinus mode), 
S (supraventricular ectopic beats), V (ventricular ectopic beats), F 
(fusion beats), and Q (unclassifiable beats). In this study, ECG 
records from the benchmark MIT/BIH arrhythmia database [30] 
were used for both training and performance evaluation. There are 
a total of 48 records in this benchmark database and each record 
has two-channel ECG signal for 30-min duration selected from 24-
hour recordings of 47 individuals. A total of 83648 beats from all 
44 records were used as test patterns for performance evaluation. 
The proposed method has achieved the highest average accuracies 
(99% for VEB and 97.6% for SVEB) on arrhythmia detection with 
the minimal computational complexity. 

 

Figure 2: Overview of the proposed approach in BP training [17]. 

A continuation of this work can be found in [17]. Several 
studies on arrhythmia detection and identification have been 
proposed ever since, e.g., [12], [13], [27]-[29]. However, all such 
studies focused on ECG beat classification for cardiac patients and 
strictly require a certain duration of training samples (e.g. 5 
minutes) containing both normal and abnormal beats of the 
patient. In the absence of abnormal beats, which is the case of a 
healthy person, such methods cannot be applied for the early 
detection of abnormal beats for an otherwise healthy person with 
no past history of cardiac problems. This is basically a “Chicken 
and Egg” problem where one needs a certain amount of abnormal 
samples to learn their characteristics in order to discriminate them 
from normal beats. A recent study [15] addressed this crucial 
problem and proposes a “personalized” solution for the early 
detection of cardiac arrhythmia as the moment they appear on a 
healthy person. This became the first attempt to propose a 
personalized early detection of ECG anomalies and cardiac health 
monitoring. In the absence of real abnormal beats this becomes a 
far more challenging problem than the patient-specific ECG beat 
classification. The key accomplishment in this work is that the 
common causes of cardiac arrhythmias are modelled by a set of 
filters and then they are used to synthesize appropriate potential 
abnormal beats of a healthy person as illustrated in Figure 3. Upon 
learning the healthy person’s (real) normal beats and potential 
(synthesized) abnormal beats, the proposed system with 1D CNNs 
can then be used to detect any abnormal beat which may occur 
during monitoring. Without using the real abnormal beats in 
training, the proposed method has achieved accuracy level, Acc = 
80.1% and false-alarm rate, FAR = 0.43%. The average 

8361



  

probability of missing the first abnormal beat, therefore, is 0.199 
and the average probability of missing all three consecutive 
abnormal beats is around 0.0079. So detecting one or more 
abnormal beat(s) among the first three occurrences is highly 
probable (> 99.2%). 
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Figure 3: The creation of the training dataset for Person-X using 
a limited number of real N-beats [15]. 

B. Applications with Vibration Signals 
For structural health monitoring (SHM) damage detection based 
on the vibration signals became the primary focus for civil, 
mechanical and aerospace engineers over the last decades. Early 
and meticulous damage detection has always been one of the 
principal objectives of SHM applications. It is not surprising that 
the most accurate methods are among the machine learning 
algorithms. The conventional methods available in the literature 
involved two processes, feature extraction and feature 
classification. A paradigm shift has recently occurred with the 
studies [14], [18], [19], and [20], which have shown that 1D CNNs 
can achieve state-of-the-art damage detection accuracy in real-
time and with the minimal training. It was indeed the first time that 
compact 1D CNNs have proven to be able to accurately 
distinguish such complex and uncorrelated signals that can even 
defy a human expert inspector such as the two samples shown in 
Figure 4. Using an ordinary computer, when the performance of 
the proposed approach was tested over the 4.2mx4.2m QU 
grandstand simulator with 30 joints, all the damage joints were 
detected without any misses or false alarms, and the detection 
speed was 45x faster than real-time speed.  

 

(Examples of undamaged vibration signals) 

 

(Examples of damaged vibration signals) 

Figure 4: Two pairs of sample vibration signals from normal 
(undamaged) and damaged structural joints [14].  

C. Applications in Power Machinery and Circuits 
In both applications, it is crucial to detect the anomaly as soon 

as it appears so as to avoid large-scale damages or even worse, 
fatal outcomes such as electric discharges or potential explosions. 

There are numerous studies that are based on machine learning 
paradigms have been proposed in this domain with varying 
performance levels. This basically shows how crucial the choice 
of the right features to characterize the electric (e.g. current or 
voltage) signals monitored. It is a well-known fact that those fixed 
and handcrafted set of features cannot optimally characterize any 
possible electric signal and thus for those cases where their 
discrimination suffers, the detection performance will deteriorate 
regardless from the classifier used. This is why they cannot 
accomplish a generic solution that can be used for any electric 
waveform or data. Similar to other applications, 1D CNNs have 
the unique capability to optimize both feature extraction and 
classification in a single learning body and naturally, the two 
recent studies [23] and [24] have shown that a real-time 
monitoring and instantaneous anomaly detection can be 
accomplished with a state-of-the-art accuracy.  

In [23] a potential motor anomaly due to the bearing faults is 
detected using compact 1D CNNs. Bearing faults are mechanical 
defects that cause slight variations at certain frequencies in the 
motor-current waveform. Similar to the vibrations signals, it is 
almost impossible to detect them visually by manual inspection 
even with a spectral analysis. 1D CNNs can accomplish this thanks 
to the layered sub-band decomposition performed in their hidden 
CNN-layers. Figure 5 shows the ROC curves of the 1D CNN 
method in [23] against the conventional methods, [31]-[34].  

 
Figure 5: ROC plots of classifiers for comparison. The x- and y-
axis represent the false positive rate and true positive rate, 
respectively [23]. 

 
Figure 6: Configuration of the 4-cell MMC circuit [24]. 

In the modern high-voltage/high power circuitry, modular 
multilevel converters (MMCs) have been becoming more popular 
as it can intrinsically provide high power ratings and enable the 
use of renewable energy sources. A conventional MMC as 
illustrated in Figure 6 provides a high power-voltage capability 
with a flexible control of the voltage level. However, reliability 
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and safety became the most crucial challenges for MMCs, which 
may encapsulate many power switching devices, each of which 
may be considered as a potential failure site. For instance, an 
open-circuit fault in a cell will distort the output voltage and 
current, which will cause an uncontrolled variation of the floating 
capacitors voltages and leads to the disruption of its operation and 
even a possible destruction of the MMC.  

Although there are numerous studies for anomaly detection in 
MMC circuits, many of them pose certain drawbacks and 
limitations which may hinder them in any practical use. For 
instance some studies proposed to put sensor to each cell which 
may be neither feasible due to the high cost nor reliable since a 
sensor may fail too. Some other studies required manual feedback 
and human interaction. Most of them suffer from high 
computational complexity that hinders their use in real-time. The 
frontier study in [24] where the 1D CNN is used first time in the 
core of the system monitors the cell capacitor voltages and the 
differential current to detect an open-circuit anomaly almost 
instantaneously. In brief, the proposed system  has accomplished 
the following objectives [24]:  

1. Perfect accuracy on fault detection and identification (e.g. 
practically 100%), 

2. Utmost reliability and robustness against variations of 
MMC parameters and fault time, 

3. Low computational complexity that allows real-time 
monitoring, 

4. Low time delay for fault detection and identification (e.g., 
<0.1s), and 

5. No false alarms. 
Besides that this method can easily scale up to very large scale 
MMCs with hundreds of cells and has the internal capability to 
detect the multiple faults.  

D.  Computational Complexity Analysis 
Without any exception, in all aforementioned 1D CNN 
applications a minimal computational complexity is achieved due 
to two reasons: 1) Compact 1D CNN configuration, 2) No feature 
extraction or data manipulation (such as 1D to 2D conversion, 
data augmentation, etc.) are needed. This makes it an ideal tool 
for a real-time application. Besides this, compact 1D CNNs do 
not require a special hardware, an ordinary computer or even a 
low-power mobile device (e.g. a mini-computer or hand-held 
device with a sensor) will suffice to make the real-time 
monitoring and analysis possible.  

 
Figure 7: The average execution times (in msec) of the proposed 
algorithm [23] in (1) and six competing algorithms (2-7).  

Due to the space limitations, we shall report the average 
computation times for the proposed and competing methods only 

on motor fault detection application as given in Figure 7. The 
competing methods are from [31]-[34].  

IV. CONCLUSIONS 

This paper has revised the major signal processing 
applications of the compact 1D CNNs. The recent studies have 
shown that with a proper systematic approach compact 1D 
CNNs can achieve the state-of-the-art performance with 
minimal computational complexity. This is especially 
important for those applications where the labeled data for 
training is scarce and a low-cost, real-time implementation is 
aimed.  

APPENDIX 

A. Forward and back-propagation in CNN-layers 

In the CNN-layers, one-dimensional forward propagation (1D-FP) is 
defined as: 

௞ݔ
௟ ൌ ܾ௞

௟ ൅ ෍ conv1D	൫ݓ௜௞
௟ିଵ, ௜ݏ

௟ିଵ൯																																								ሺ1ሻ

ே೗షభ

௜ୀଵ

 

where ݔ௞
௟   is defined as the input, ܾ௞

௟   is defined as the bias of the ݇௧௛ 
neuron at layer ݈, ݏ௜

௟ିଵ is the output of the ݅௧௛ neuron at layer ݈ െ 1, 
௜௞ݓ
௟ିଵ	is the kernel from the ݅ ௧௛ neuron at layer ݈ െ 1	to the ݇ ௧௛ neuron 

at layer ݈. The output ݕ௞
௟  can be written from the input ݔ௞

௟  as, 
௞ݕ
௟ ൌ ݂൫ݔ௞

௟ ൯								and											ݏ௞
௟ ൌ ௞ݕ

௟ ↓  ሺ2ሻ																																				ݏݏ
where ݏ௞

௟ 	stands for the output of the neuron and ↓  represents the ݏݏ
down-sampling operation with factor, ݏݏ. 

The back-propagation (BP) methodology can be summarized as 
follows. The BP of the error starts from the output MLP-layer. 
Assume ݈ ൌ 1 for the input layer and ݈ ൌ  for the output layer. Let ܮ
௅ܰ  be the number of classes in the database; then, for an input vector 

௜ݐ ,and its target and output vectors ,݌
௣ and ൣ ଵݕ

௅,⋯ , ேಽݕ
௅ ൧, respectively.  

With that, in the output layer for the input ݌; the mean-squared error 
(MSE), ܧ௣,  can be expressed as follows: 

௣ܧ ൌ MSE	൫ݐ௜
௣, ଵݕൣ

௅,⋯ , ேಽݕ
௅ ൧൯ ൌ෍൫ݕ௜

௅ െ ௜ݐ
௣൯

ଶ
																						ሺ3ሻ

ேಽ

௜ୀଵ

 

To find the derivative of ܧ௣ by each network parameter, the delta 

error, ∆௞
௟ ൌ

பா

ப௫ೖ
೗  should be computed. Specifically, for updating the 

bias of that neuron and all weights of the neurons in the preceding 
layer, one can use the chain-rule of derivatives as,  

ܧ∂

௜௞ݓ∂
௟ିଵ ൌ ∆௞

௟ ௜ݕ
௟ିଵ											and																		

ܧ∂

∂ܾ௞
௟ ൌ ∆௞

௟ 																						ሺ4ሻ 

Then, the BP of the delta-error from the next layer (l+1) to layer l is 
expressed as: 

ܧ∂

௞ݏ∂
௟ ൌ ௞ݏ∆

௟ ൌ ෍
ܧ∂

௜ݔ∂
௟ାଵ

௜ݔ∂
௟ାଵ

௞ݏ∂
௟

ே೗శభ

௜ୀଵ

ൌ ෍ ∆௜
௟ାଵ

ே೗శభ

௜ୀଵ

௞௜ݓ
௟ 																							ሺ5ሻ 

Following BP to the input delta,	∆௞
௟ , as, 

	∆௞
௟ ൌ

ܧ∂

௞ݕ∂
௟

௞ݕ∂
௟

௞ݔ∂
௟ ൌ

ܧ∂

∂us௞
௟

∂us௞
௟

௞ݕ∂
௟ ݂

ᇱ൫ݔ௞
௟ ൯ ൌ up൫∆ݏ௞

௟ ൯ߚ	݂ᇱ൫ݔ௞
௟ ൯					ሺ6ሻ 

where ߚ ൌ ሺݏݏሻିଵ. Then, the BP of the delta error ቀ∆ݏ௞
௟ ஊ
← ∆௟

௟ାଵቁ can 

be expressed as:  

௞ݏ∆
௟ ൌ ෍ conv	1Dz ቀ∆௟

௟ାଵ, rev൫ݓ௞௜
௟ ൯ቁ																																				ሺ7ሻ

ே೗శభ

௜ୀଵ

 

where revሺ. ሻ	is used to reverse the array and conv	1Dzሺ. , . ሻ	is used 
to perform full convolution in 1D. 

 Further details of the BP algorithm are skipped here due to space 
limitations and can be found in [14] and [23]. 
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