
LEARNING TO RANK: A PROGRESSIVE NEURAL NETWORK LEARNING APPROACH

Dat Thanh Tran1 and Alexandros Iosifidis2

1Laboratory of Signal Processing, Tampere University of Technology, Finland
2Department of Engineering, ECE, Aarhus University, Denmark

Emails: dat.tranthanh@tut.fi, alexandros.iosifidis@eng.au.dk

ABSTRACT

Learning to rank is an essential component in an infor-
mation retrieval system. The state-of-the-art ranking systems
are often based on an ensemble of classifiers, such as Ran-
dom Forest or LambdaMART, which aggregates the ranking
outputs produced by thousands of classifiers. The storage
and computation requirement of an ensemble model is usu-
ally very high, imposing a significant operating cost to the
retrieval system. To tackle this problem, we propose an algo-
rithm that adaptively learns a single heterogeneous feedfor-
ward network architecture, composing of Generalized Oper-
ational Perceptrons, given a ranking problem. Experimental
results in web search ranking and image retrieval tasks show
that the proposed algorithm compares favourably to the re-
lated algorithms.

Index Terms— Generalized Operational Perceptron, Pro-
gressive Neural Network Learning

1. INTRODUCTION

The Learning to Rank (LETOR) problem finds its application
in several domains, such as online advertisements [1], rec-
ommendation systems [2], natural language processing [3] or
multimedia search engines [4]. The goal of a LETOR prob-
lem is to learn a ranking model that produces a ranked list of
data items given a query. Based on the input and the output
of the underlying ranking method, models can be divided into
three categories: those following a pointwise, a pairwise or
a listwise approach. Since the problem of ranking inherently
involves evaluating the relative relevance, the most popular
methods are usually based on pairwise or listwise approach.
In pairwise ranking, a model is learned to correctly assign a
relevance score for each pair of query i and database item j,
while in listwise ranking, a model is learned to produce the
correct permutation of data items given a query.

Several state-of-the-art ranking systems employ an en-
semble of regression trees such as LambdaMART [5], BROOF-
L2R [6] or Quickscorer [7]. The advantage of forest-based
models is the ease of parallelization since individual regres-
sors can be trained in parallel. In addition, traditional infor-
mation retrieval metrics can also be used as a loss function in

tree-based models. Nevertheless, these models often consist
of thousands of weak classifiers, imposing huge memory and
computation cost in total, which is critical in a system dealing
with millions of concurrent queries.

There has been a great effort to improve the efficiency of
LETOR models recently [7]. For example, in [8], the authors
proposed to approximate the scoring function of an ensem-
ble by training a feed-forward network to mimic the output
of a pre-trained ensemble. This approach is also known as
knowledge distillation in the network compression commu-
nity. Expert-designed neural network architectures have also
been proposed in [9, 10]. In [7], the authors proposed an algo-
rithm to efficiently traverse additive ensembles of regression
trees by only using bitwise operations, producing significant
ranking speedup.

In this paper, we propose to tackle the LETOR problem by
adaptively growing a neural network architecture comprised
of Generalized Operational Perceptrons (GOP), which is a
generalized Perceptron model proposed in [11], to better sim-
ulate the neuronal activities of biological neurons. Different
from the traditional McCulloch-Pitts perceptron model, GOP
admits a wide range of both linear and nonlinear transforma-
tions. It has been shown in [11] that GOP-based architecture
can surpass the learning capacity of Multilayer Perceptrons
(MLPs) or Radial Basis Function (RBF) networks with fewer
neurons. Thus, given a particular LETOR problem at hand,
we aim to harness the capacity of GOPs to learn a compact
and efficient network topology progressively.

The contributions of our work can be summarized as fol-
lows:

• We propose to solve the ranking problem by a data-
dependent, efficient algorithm that progressively learns
a heterogeneous multilayer architecture of GOPs. The
compact network architectures generated by our pro-
posed algorithm requires small memory and computa-
tion footprint during inference.

• We provide empirical validation of our algorithm on
web search ranking and image retrieval tasks in com-
parison with related algorithms.

The remainder of the paper is organized as follows: Sec-

8355978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

Fig. 1. Activities of the i-th GOP neuron at layer l + 1, char-
acterized by the synaptic weights wl+1

ki , the nodal operator
ψl+1

i , the pooling operator ρk+1
i and the activation operator

f l+1
i

tion 2 reviews the GOP model and its original learning algo-
rithm. Section 3 describes our proposed algorithm. In Section
4, we detail our experimental setup and present our empirical
results. Section 5 concludes our work.

2. RELATED WORKS

2.1. Generalized Operational Perceptron

A GOP neuron sequentially performs three distinct opera-
tions: nodal (ψ), pooling (ρ) and activation (f). These three
operations simulate the operations performed in biological
learning system of mammels: the modification of the input
signals in the Dendrites; the pooling of the modified signals
in the Soma; and the pulse sending when the pooled poten-
tials exceed a threshold in Axon hillock [11]. Since a diverse
set of neuronal activities is performed in a biological learning
system [12], GOP neuron model encapsulates this diversity of
transformations by a set of nodal, pooling and activation oper-
ators, from which each GOP neuron can select. In this paper,
the term operator set refers to a particular choice of nodal,
pooling and activation operators. The operations of a GOP
neuron is illustrated in Figure 1 and the library of operators
used in our work is given in Table 1. The following equations
describe the nodal, pooling and operation of the i-th GOP in
layer l + 1:

zl+1
ki = ψl+1

i (ylk, w
l+1
ki) (1)

xl+1
i = ρl+1

i (zl+1
1i , . . . , zl+1

Nli
) + bl+1

i (2)

yl+1
i = f l+1

i (xl+1
i) (3)

Where wl+1
ki and bl+1

i denote the adjustable synaptic weights
and bias term, respectively.

2.2. Progressive Operational Perceptron

It is clear that learning GOP-based networks involves finding
the proper operator set and the weights for each neuron. To
this end, the Progressive Operational Perceptron (POP) algo-
rithm was proposed to train such networks [11]. Given a tar-
get Mean Squared Error (MSE) and a network template that
defines the maximum number of hidden layers and the size
of each layer (hk), POP sequentially learns one hidden layer
at a time with the assumption that GOPs in the same hidden
layer share the same operator set. At step k, all previous k−1
hidden layers are fixed and POP constructs a Single Hidden
Layer Network (SHLN) consists of hk−1 input neurons, hk
hidden GOPs and O output GOPs. The weights and the op-
erator set of the hidden (φh) and output layer (φO) in SHLN
are determined by a greedy iterative search procedure called
two-pass GIS.

Let N be the number of operator sets in the library, and
φh and φO be the operator set of the hidden and output layer
of SHLN. In the first pass, φh is chosen randomly, and POP
assigns each operator set in the library to φO and trains the
SHLN configuration with E epochs using Back Propagation
(BP) algorithm. The best φ∗O providing the minimum MSE is
then selected. With φ∗O fixed, POP iterates through the library
again to select the best φ∗h. The second GIS pass is similar to
the first pass, except φ∗h is used instead of a random one. It
is clear that the computation cost of two-pass GIS is NE BP
epochs.

After two-pass GIS, if the target MSE is achieved, POP
terminates. Otherwise, the algorithm continues to learn the
(k+1)-th hidden layer in a similar manner. After the progres-
sion, POP fixes all operator set assignments and fine-tunes the
weights for some epochs if the target MSE is not met.

3. PROPOSED ALGORITHM

While POP adopts a layer-wise approach with fixed layer
sizes and layer homogeneity constraint, we propose an al-
gorithm, called Heterogeneous Multilayer Generalized Op-
erational Perceptron (HeMLGOP), which performs block-
wise progression leading to heterogeneous layers of data-
dependent size.

3.1. Network Progression

HeMLGOP operates on a block unit; thus the number of
GOPs in a block unit is given as a hyper-parameter. At each
progressive step, HeMLGOP adds a new block of GOPs to
the existing network architecture, and all previous blocks are
fixed (the weights and the operator set assignment). At step
k, given that l hidden layers have been learned, there are two
cases:

• If the progression in the l-th hidden layer was not ter-
minated in step k − 1, HeMLGOP adds new block to

8356

Table 1. Operators
Nodal (Ψ) ψl+1

i (ylk, w
l+1
ki)

Multiplication wl+1
ki ylk

Exponential exp(wl+1
ki ylk)− 1

Harmonic sin(wl+1
ki ylk)

Quadratic wl+1
ki (ylk)

2

Gaussian wl+1
ki exp(−wl+1

ki (ylk)
2)

DoG wl+1
ki ylk exp(−w

l+1
ki (ylk)

2)

Pool (P) ρl+1
i (zl+1

1i , . . . , zl+1
Nli

)

Summation
∑Nl

k=1 z
l+1
ki

1-Correlation
∑Nl−1

k=1 zl+1
ki zl+1

(k+1)i

2-Correlation
∑Nl−2

k=1 zl+1
ki zl+1

(k+1)iz
l+1
(k+2)i

Maximum max
k

(zl+1
ki)

Activation (F) f l+1
i (xl+1

i)

Sigmoid 1/(1 + exp(−xl+1
i))

Tanh sinh(xl+1
i)/ cosh(xl+1

i)

ReLU max(0, xl+1
i)

Softplus log(1 + exp(−xl+1
i))

Inverse Absolute xl+1
i /(1 + |xl+1

i |)
ELU xl+1

i 1xl+1
i ≥0 + exp(xl+1)i1xl+1

i <0

the l-th hidden layer.

• If the progression in the l-th hidden layer was termi-
nated in step k − 1, HeMLGOP forms the (l + 1)-th
hidden layer with a new block.

The progression in a hidden layer is terminated when the
addition of new neurons does not improve the performance
significantly. This saturation is determined based on the
rate of performance improvement. Particularly, let Lk−1 and
Lk−2 be the loss achieved at step k−1 and k−2 respectively,
the progression in the current hidden layer terminates if:

Lk−2 − Lk−1

Lk−2
< ε (4)

where ε is a hyper-parameter of the proposed algorithm.
HeMLGOP terminates of progression of the network

when adding a new fully grown hidden layer merely improves
the performance. This means that when the progression in
the l-th hidden layer terminates, HeMLGOP evaluates the
relative improvement of the network with and without the
l-th hidden layer. That is, if:

Lm − Ln

Lm
< ε (5)

HeMLGOP discards the l-th hidden layer, leading to the final
network architecture having l − 1 hidden layers. Otherwise,
the algorithm keeps the l-th hidden layer and continues grow-
ing new hidden layers. In Eq. (5), m and n refers to the last
block index of hidden layer l − 1 and l respectively.

3.2. Block optimization

In HeMLGOP, we enforce two constraints to allow efficient
optimization of the new block: GOPs within the same block
share the same operator set, and the output layer which con-
nects the last hidden layer and the output neurons is a linear
transformation layer. At step k, when a new block of GOPs is
added to the network, HeMLGOP optimizes for the operator
set assignment and the weights of the new block as well as the
output layer weights.

To select the best performing operator set for the new
block, it is necessary that all operator sets in the library are
evaluated. We propose to perform the evaluation based on
a randomized approach: for each operator set in the library,
we randomly draw the block weights from a uniform dis-
tribution and the output layer weights are calculated via the
least-squared solution of regressing the targets. Particularly,
let H ∈ RN×D and Y ∈ RN×C denote the last hidden layer
output and the target output. The output layer weights Wo

are calculated as follows:

Wo = H†Y (6)

where H† is the Moore-Penrose generalized inverse of H.
The best performing operator set with random weights is

selected for the new block and fixed. Since each operator
set represents a distinct type of transformation, we assume
that the suitable functional form of a GOP, i.e., the operator
set, can be evaluated with random synaptic weights. Even
if a well suitable operator set is not selected in this step, it
can always be selected when the next blocks are added to the
current hidden layer.

After fixing the operator set assignment of the new
block, HeMLGOP updates the block weights and output
layer weights by BP for E epochs to harness the new block,
which also helps avoid redundancy of “weak neurons”. Once
a block is optimized, its operator set and weights are fixed.
At each progressive step, HeMLGOP only requires one loop
through the library of operator sets, compared to four loops
in POP, which is much more computationally expensive.

4. EXPERIMENTS

To evaluate the effectiveness of HeMLGOP in LETOR prob-
lems, we conducted experiments on two datasets:

• MSLR-WEB10K [13]: Microsoft Learning to Rank
dataset contains 10000 queries. Each query-url pair is
represented by a 136-dimensional feature vector and a
relevance score ranging from 0 (irrelevant) to 4 (per-
fectly relevant). We used a subset of MSLR-10K by
randomly selecting 500 query IDs (non-overlapping)
for each train/validation/test set with 30 relevant and 30
irrelevant query-url pairs for ID. This results in 30, 000
pairs for each set.

8357

Table 2. Performance on MSLR-WEB10K
mAP NDCG@1 NDCG@5 NDCG@10

SVM [16] 0.5718 0.3036 0.4435 0.5621
RF [17] 0.6117 0.5956 0.6851 0.7475

BLS [18] 0.5909 0.5614 0.6550 0.7270
S-ELM [20] 0.6070 0.5908 0.6794 0.7444

PLN [19] 0.5946 0.5304 0.6536 0.7248
HeMLGOP 0.6143 0.5961 0.6884 0.7496

Table 3. Performance on ImageNet
mAP NDCG@1 NDCG@5 NDCG@10

SVM [16] 0.5554 0.5950 0.5883 0.5928
RF [17] 0.7447 0.9250 0.8754 0.8439

BLS [18] 0.7169 0.8200 0.8191 0.8002
S-ELM [20] 0.7235 0.8750 0.8480 0.8298

PLN [19] 0.5666 0.8350 0.7723 0.7388
HeMLGOP 0.8131 0.9150 0.9082 0.8910

• Image Retrieval: ImageNet dataset [14] contains im-
ages representing different objects. We used a sub-
set of this dataset to prepare the image retrieval task
by selecting 200 different objects (non-overlapping) for
each train/validation/test set. For each object, we ran-
domly generated 50 relevant and 50 irrelevant query-
image pairs, producing 20, 000 query-image pairs for
each set. To generate features for each query-image
pair, we took the difference between the deep features
extracted by average pooling over spatial dimensions of
the last convolution layer of VGG network [15] trained
on ILSVRC2012.

Given the representation of query pairs with labeled rel-
evance, the LETOR problem is posed as a classification
problem, i.e., to learn the prediction of relevance score.
Along with HeMLGOP, we evaluated linear SVM [16], Ran-
dom Forest (RF) [17], BLS [18], PLN [19] and S-ELM
[20]. The last three algorithms also perform progressive
learning of the network architecture. Since POP is com-
putationally expensive for large datasets, we did not con-
duct experiments with POP. For the full setting of hyper-
parameters of each model in our experiments, please refer
https://github.com/viebboy/LETOR. Regarding
the performance metrics, mean Average Precision (mAP) and
Normalized Discounted Cumulative Gain (NDCG) over each
query ID on the test set are reported.

Table 2 and 3 show the experimental results on two
datasets. For both datasets, it is clear that HeMLGOP out-
performs other ranking algorithms. On MSLR-WEB10K
dataset, the performance of Random Forest (RF) is on par
with HeMLGOP while other competing algorithms lag be-
hind, especially when the cut-off thresholds of NDCG are
high (5 and 10). The gaps between the proposed algorithm
and others are relatively huge on ImageNet dataset on all

Table 4. Operating cost on MSLR-WEB10K
Storage (Mb) Inference (ms)

SVM [16] 6× 10−3 8.3× 10−4

RF [17] 4.9× 103 4.7
BLS [18] 1.1 0.1

S-ELM [20] 33 3.7
PLN [19] 0.78 1.1× 10−2

HeMLGOP 0.06 4.7× 10−1

Table 5. Operating cost on ImageNet
Storage (Mb) Inference (ms)

SVM [16] 7× 10−3 1.4× 10−2

RF [17] 3.2× 103 5.0
BLS [18] 1.8 4.7× 10−1

S-ELM [20] 22 2.1
PLN [19] 1.0 3.4× 10−2

HeMLGOP 0.1 5.6× 10−1

metrics.
In order to give an approximate comparison of the operat-

ing cost of each model, Table 4 and 5 present the model sizes
(in megabytes) and the time taken to evaluate of a query pair
(in miliseconds) on MSLR-30K and ImageNet dataset respec-
tively. It is obvious that Random Forest (RF) models require
a significant amount of storage, which is on the order of hun-
dreds of megabytes. The second heaviest model is S-ELM,
which consumes dozens of megabytes. The proposed HeML-
GOP models are very compact, accounting for few hundreds
of kilobytes, ranking second in terms of compactness.

Random Forest and S-ELM are not only heavy-weight
but also slow compared to other algorithms during inference.
While the proposed HeMLGOP models are not the fastest,
they are relatively fast compared to other neural network
based algorithms and much faster than the ensemble of trees.
While the amount of storage can give a reasonable estimate
on the compactness, the actual time taken to evaluate a query
pair only illustrates a rough estimate on how fast each algo-
rithm is during inference. The total number of computation is
not necessarily proportional to the actual time taken, which is
dependent on the implementation details such as caching or
concurrency support.

5. CONCLUSION

In this work, we proposed an efficient algorithm to learn com-
pact heterogeneous architectures of GOP-based networks. We
employed these data-driven networks for solving ranking and
content-based retrieval problems. The empirical results show
that the proposed algorithm performs similarly or better than
the related ensemble models, while requiring much smaller
storage space and being faster for the ranking and retrieval
task.

8358

6. REFERENCES

[1] Y. Zhu, G. Wang, J. Yang, D. Wang, J. Yan, J. Hu, and
Z. Chen, “Optimizing search engine revenue in spon-
sored search,” in Proceedings of the 32nd international
ACM SIGIR conference on Research and development
in information retrieval, pp. 588–595, ACM, 2009.

[2] A. Karatzoglou, L. Baltrunas, and Y. Shi, “Learning
to rank for recommender systems,” in Proceedings of
the 7th ACM conference on Recommender systems,
pp. 493–494, ACM, 2013.

[3] M. Amini, N. Usunier, and C. Goutte, “Learning from
multiple partially observed views-an application to mul-
tilingual text categorization,” in Advances in neural in-
formation processing systems, pp. 28–36, 2009.

[4] J. Yu, D. Tao, M. Wang, and Y. Rui, “Learning to
rank using user clicks and visual features for image
retrieval,” IEEE transactions on cybernetics, vol. 45,
no. 4, pp. 767–779, 2015.

[5] C. J. Burges, “From ranknet to lambdarank to lamb-
damart: An overview,” Learning, vol. 11, no. 23-581,
p. 81, 2010.

[6] C. C. de Sá, M. A. Gonçalves, D. X. Sousa, and
T. Salles, “Generalized broof-l2r: a general framework
for learning to rank based on boosting and random
forests,” in Proceedings of the 39th International ACM
SIGIR conference on Research and Development in In-
formation Retrieval, pp. 95–104, ACM, 2016.

[7] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego,
N. Tonellotto, and R. Venturini, “Quickscorer: A fast
algorithm to rank documents with additive ensembles
of regression trees,” in Proceedings of the 38th Inter-
national ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pp. 73–82, ACM,
2015.

[8] D. Cohen, J. Foley, H. Zamani, J. Allan, and W. B. Croft,
“Universal approximation functions for fast learning to
rank: Replacing expensive regression forests with sim-
ple feed-forward networks,” in The 41st International
ACM SIGIR Conference on Research & Development in
Information Retrieval, pp. 1017–1020, ACM, 2018.

[9] G. Cao, A. Iosifidis, K. Chen, and M. Gabbouj, “Gener-
alized multi-view embedding for visual recognition and
cross-modal retrieval,” IEEE transactions on cybernet-
ics, vol. 48, no. 9, pp. 2542–2555, 2018.

[10] G. Cao, A. Iosifidis, M. Gabbouj, V. Raghavan, and
R. Gottumukkala, “Deep multi-view learning to rank,”
arXiv preprint arXiv:1801.10402, 2018.

[11] S. Kiranyaz, T. Ince, A. Iosifidis, and M. Gabbouj,
“Progressive operational perceptrons,” Neurocomput-
ing, vol. 224, pp. 142–154, 2017.

[12] R. H. Masland, “Neuronal diversity in the retina,” Cur-
rent opinion in neurobiology, vol. 11, no. 4, pp. 431–
436, 2001.

[13] T. Qin and T. Liu, “Introducing LETOR 4.0 datasets,”
CoRR, vol. abs/1306.2597, 2013.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pp. 248–255,
Ieee, 2009.

[15] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[16] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin, “Liblinear: A library for large linear classi-
fication,” Journal of machine learning research, vol. 9,
no. Aug, pp. 1871–1874, 2008.

[17] A. Liaw, M. Wiener, et al., “Classification and regres-
sion by randomforest,” R news, vol. 2, no. 3, pp. 18–22,
2002.

[18] C. P. Chen and Z. Liu, “Broad learning system: an ef-
fective and efficient incremental learning system with-
out the need for deep architecture,” IEEE transactions
on neural networks and learning systems, vol. 29, no. 1,
pp. 10–24, 2018.

[19] S. Chatterjee, A. M. Javid, M. Sadeghi, P. P. Mitra,
and M. Skoglund, “Progressive learning for system-
atic design of large neural networks,” arXiv preprint
arXiv:1710.08177, 2017.

[20] H. Zhou, G.-B. Huang, Z. Lin, H. Wang, and Y. C.
Soh, “Stacked extreme learning machines,” IEEE trans-
actions on cybernetics, vol. 45, no. 9, pp. 2013–2025,
2015.

8359

		2019-03-18T11:11:35-0500
	Preflight Ticket Signature

