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ABSTRACT

In this paper, an algorithm for performing System Iden-
tification and inference of the filtering recursion for stochas-
tic non-linear dynamical systems is introduced. Additionally,
the algorithm allows for enforcing domain-constraints of the
state variable. The algorithm makes use of an approximate in-
ference technique called Variational Inference in conjunction
with Deep Neural Networks as the optimization engine. Al-
though general in its nature, the algorithm is evaluated in the
context of Non-Intrusive Load Monitoring, the problem of in-
ferring the operational state of individual electrical appliances
given aggregate measurements of electrical power collected in
a home.

Index Terms— Dynamical Systems, Variational Infer-
ence, Deep Learning, System Identification, Filtering

1. INTRODUCTION

System identification and inference for dynamical systems
has a long history [1]. In this paper we consider systems
relating observations x ∈ RT×M to unknown latent states
z ∈ RT×C , with a joint distribution pΘ(x, y), known up to
parameter Θ, that can be factorized as follows:

zt ∼ pΘ(zt|zt−1) xt ∼ pΘ(xt|zt) (1)

When the dynamics are linear, optimal solutions such as
the Kalman filters [2] and subspace methods [3] exist. How-
ever, when the system dynamics are non-linear and stochas-
tic, non-optimal techniques such as particle filters in conjunc-
tion with Expectation Maximization need to be resorted to.
The bottleneck for these approaches is oftentimes the compu-
tation of the filtering recursion pΘ(zt|x1:t), which for many
latent variable models is computationally intractable. We pro-
pose a novel algorithm in which maximizing the data likeli-
hood pΘ(x1:T ) is performed jointly alongside approximating
inference of the intractable filtering recursion. The algorithm
makes use of an approximate statistical inference technique
called Variational Inference (VI), which has recently received
increased attention from the Machine Learning community.

Specifically, recent breakthroughs have improved VI’s appli-
cability [4], scalability [5, 6] and accuracy [7, 8]. See [9, 10]
for reviews of the approach.

The algorithm will be showcased in the context of Non-
Intrusive Load Monitoring [11] (NILM), which is the prob-
lem of inferring the operational state of electrical appliances
within a home given aggregate consumption measurements
collected at a single sensing point and was first introduced
in the seminal paper by Hart [11]. The application of VI to
NILM is not new [12, 13], however, previous approaches re-
lied on the assumption that the system dynamics can be fac-
torized and can be modeled by a Factorial Hidden Markov
Model [14]. Note that NILM is a challenging problem be-
cause the latent variable is usually assumed to be binary, i.e.
zt ∈ Z = {0, 1}C where C is the number of components to
be inferred. This integrality constraint is challenging for two
reasons. First, linearizing approaches like Extended Kalman
filters become hard to apply and enumerating the latent do-
main is computationally intractable because the cardinality of
Z grows exponentially with C. As we will show later, just
like VI generalizes Expectation Maximization to latent vari-
able models with intractable posteriors, the main contribution
of this paper is the generalization of VI to a class of latent
variable models with intractable joint distributions. Specifi-
cally, this class constitutes dynamical systems such as those
described by (1).

2. VARIATIONAL INFERENCE

We begin by deriving Variational Inference from the Expec-
tation Maximization (EM) algorithm. The EM algorithm [15]
is an algorithm to perform maximum likelihood inference on
unknown parameters Θ in a latent variable model governed
by observations x and latent variables z, i.e. it maximizes∑
z pΘ(x, z) w.r.t. Θ. It can be shown that EM performs

coordinate ascent on a function F1 known as the Variational
Free Energy defined by:

F1(Θ, P̃ ) = EP̃ log pΘ(x, z)− EP̃ log p̃(z)

Specifically, maximizing F1 in the direction of P̃ (the E-
step) computes P̃ = p(z|x) whereas the maximization step
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in the direction of Θ (the M-step) improves the evidence
pΘ(x) [16]. Therefore, because the E-step requires com-
puting the posterior, EM is only applicable if computing
the posterior p(z|x) is computationally tractable. However,
for many latent variable models, computing the posterior
is computationally intractable because the denominator of
p(z|x) = p(z,x)∑

z∈Z p(z,x) is oftentimes hard to compute if the
support of the latent variable is large. Variational Inference
(VI) is a generalization of EM to latent variable models with
intractable posterior distributions [17].
The main idea behind Variational Inference is the introduc-
tion of a tractable auxiliary distribution Qψ parameterized
by the variational parameters ψ. Qψ is chosen from a fam-
ily of distributions such that ideally, there is a ψ such that
qψ(z|x) = pΘ(z|x) and because of recent successes of
Neural Networks for non-linear optimization, Qψ is often
parameterized by Neural Netsworks. For VI, a function akin
to F1 is maximized, which substitutes P̃ for the auxiliary but
tractable distribution Qψ .

F2(Θ, ψ) = Eqψ(z|x) log pΘ(x, z)− Eqψ(z|x) log qψ(z|x)

= log pΘ(x)−DKL(qψ(z|x)||pΘ(z|x))

Maximizing F2 w.r.t. Θ optimizes a lower bound of the
evidence. This bound is tight if qψ(z|x) = pΘ(z|x), i.e.
DKL(q(z|x)||pΘ(z|x)) = 0. Furthermore, maximizing F2

w.r.t. ψ minimizes the KL-divergence, i.e. it tightens the
bound. Note that, because of these properties, VI also allows
for performing posterior inference. After the optimization
procedure, because Qψ will be maximally similar to PΘ, in
order to perform posterior inference on the intractable PΘ,
inference is performed on Qψ instead. However, note that
although Variational Inference generalizes the EM algorithm
to latent variable problems with intractable posterior distri-
butions, it still requires the joint distribution pΘ(x, z) to be
tractable. However, for many latent variable models even
the joint distribution might be intractable. One such class
of problems constitute temporal models. In this paper, we
generalize VI to this class of problems.

3. INTRACTABLE JOINT

The class of latent variable models of interest constitute dy-
namical systems in which the latent state evolves over time
according to dynamics adhering to the first-order Markov as-
sumption and the observation is some probabilistic function
of the system state. This entails that the joint distribution of
the observation and system states can be factored based on
p(xt|zt) and p(zt|zt−1)1, i.e.:

p(x1:T , z0:T ) = p(z0)

T∏
t=1

p(xt|zt)p(zt|zt−1)

1For notational convenice, all dependencies on parameters Θ and ψ are
omitted.

Let pt = p(zt|x1:t) and pt = p(zt|x1:t). For such a
model, a lower bound of the chain-rule factorization of the
likelihood can be derived as:

F3(Θ, ψ, t) = Eqt log pΘ(xt, zt|x1:t−1)− Eqt log qt (2)
= log pΘ(xt|x1:t−1)−DKL(qt||pt) (3)

Note that summing F3 over time steps implies that a lower
bound of the log-evidence is maximized since:

T∑
t=0

F3(Θ, ψ, t) = log pΘ(x1:T )−
T∑
t=1

DKL(qt||pt)

However, evaluating the bound in 2 is intractable for many
latent variable models of interest because the joint distribution
is intractable as seen below:

p(xt, zt|x1:t−1) = p(xt|zt)
∑
z′∈Z

p(zt|z′)p(z′|x1:t−1) (4)

First, the summation over the latent domain is usually in-
tractable. Second, evaluating equation (4) at time point t re-
quires knowledge of the posterior at time t − 1 which is in-
tractable.

3.1. Monte Carlo Integration and Importance Sampling

In the following, we will show how an unbiased approxima-
tion can be obtained that makes use of Monte Carlo Integra-
tion in conjunction with Importance Sampling [18].

Monte Carlo (MC) Integration is a numerical technique
to approximate an expectation of the type Ep(z)f(z) by
sampling, i.e. N samples are drawn i.i.d. from p(z) and
Ep(z)f(z) ≈ 1

N

∑N
i=1 f(z(i)) with z(i) ∼ p(z).

Note that the intractable summation in equation (4) can be
written as an expectation of this type, i.e.

p(xt, zt|x1:t−1) = p(xt|zt)Ept−1p(zt|zt−1) (5)

However, drawing samples from p(zt−1|x1:t−1) is not trivial
and would require time-consuming advanced samplers. In-
stead, a technique to change the sampling distribution called
Importance Sampling is being employed.

Importance Sampling is usually used as a variance reduc-
tion technique. However, in this case, it will be used to ease
the computational burden of approximating equation (5). The
general idea is the following: Sampling from p(zt−1|x1:t−1)
is computationally challenging, however, we have access to
a distribution similar to P from which sampling is, in com-
parison, computationally cheap: the auxiliary distribution Q.
Thus, we can rewrite equation (5) in the following way:

p(xt, zt|x1:t−1) = p(xt|zt)Eqt−1

pt−1

qt−1
p(zt|zt−1) (6)

If qt = 0 entails pt = 0, then equation (6) is an unbiased esti-
mator of equation (4). However, in order to evaluate equation
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(6) knowledge of the true posterior pt−1 = p(zt−1|x1:t−1) is
required which was deemed intractable.
Note that p(zt|x1:t−1) = p(zt,xt|x1:t−1)

p(xt|x1:t−1) , thus if p(xt|x1:t−1)

was provided, the joint distribution could be computed recur-
sively. However, p(xt|x1:t−1) is computationally intractable
because it would require enumeration of the latent space. In-
stead, an asymptotically unbiased estimation of p(xt|x1:t−1)
is obtained by, again, making use of MC Integration in con-
junction with Importance Sampling:

p̂(xt|x1:t−1) = Eqt
p(xt, zt|x1:t−1)

qt

Putting these findings together yields what is known as self-
normalizing Importance Sampling [18]. A density w is de-
fined as follows:

wt−1 =
p(zt, xt|x1:t−1)

q(zt|x1:t)

1

p̂(xt|x1:t−1)
(7)

A tractable and asymptotically unbiased approximation of
equation (4) can therefore be obtained by evaluating:

pΘ(xt, zt|x1:t−1) = p(xt|zt)Eqt−1
wt−1p(zt|zt−1) (8)

Note that by making use of the approximation described
in equation (8), equation (2) can be evaluated by Monte Carlo
Integration and that F3 can be maximized by obtaining gra-
dient estimators with techniques introduced in [4]. However,
even though the gradient estimator is unbiased, it usually has
high variance making learning difficult.

4. VARIANCE REDUCTION

It is well known that Variational Inference struggles with
high variance estimators and numerous techniques for vari-
ance reduction have been proposed based on e.g. Rao-
Blackwellization, control variates, reparameterization [6] as
well as quasi-Monte Carlo techniques [19]. Note that usually,
the gradient estimator w.r.t. ψ, i.e. the gradients of the auxil-
iary distribution (in this case the neural network weights), are
subject to high variance whereas gradients w.r.t. Θ are less
problematic. In the following section two variance reduction
techniques tailored to the problem at hand are introduced.

4.1. Sampling without replacement

Because the system state is assumed to be discrete, a vari-
ance reduction technique that has been studied for decades,
namely sampling without replacement can be applied. With
the correct choice of the sampling scheme, the variance of
the estimator can be reduced considerably whilst not intro-
ducing a bias [20]. In addition to a reduction in variance,
sampling without replacement avoids the problem of mode
collapse. When sampling with replacement, the system is
at danger of erroneously assigning all the probability mass

to a single latent state z. If this is the case, the algorithm
has essentially stopped exploring the latent domain and ‘got
stuck’. Note that sampling w/o replacement from Q is not
trivial. However, there is considerable body of pre-existing
work. We follow the scheme introduced in [21] with some
slight modifications. Instead of using the Pareto design as the
underlying sampler, in this work an elimination sampler in-
troduced in [22] was employed. This results in a slower but
more accurate sampling design.

4.2. Control Variate

It can be shown that the gradient estimator of F3 w.r.t. the
variational parameters ψ is an unbiased estimator of the gra-
dient of the KL-divergence [23], i.e. 2:

Eq(z|x)∇ψ log
p(z|x)

q(z|x)︸ ︷︷ ︸
KL-divergence

= Eq(z|x)∇ψ log
p(x, z)

q(z|x)︸ ︷︷ ︸
F3

= Eq(z|x)∇ψ log
p(x, z)

q(z|x)
− c︸ ︷︷ ︸

Control Variate

However, the variance of the gradient of F3 exhibits much
more variance. This is why control variates have been pro-
posed. It can be shown that any constant c can be subtracted
from F3 without introducing a bias. The question then is
which c to use. Note that if c = log p(x), then an estimator
with the variance of the KL-divergence estimator is obtained
and also note that in 3.1 a method to obtain an approxima-
tion of p(x) was introduced. Using c = log p(x) is how-
ever not optimal but worked well in our experiments. Using
this control variate also simplifies the implementation, since
if ct = log p̂(xt|x1:t−1), then:

F4(Θ, ψ, t) = Eqψ(zt|x1:t) log
pΘ(xt, zt|x1:t−1)

log qψ(zt|x1:t)
− ct

= Eqψ(zt|x1:t) logwt

Thus, using c = log p(x) as a control variate reduces the al-
gorithm to recursively computing logwt = logw(zt|x1:t) as
defined in equation (7). Note that for all optimization steps,
we treat c as a constant, i.e. even though c depends on Θ, we
do not allow gradients to flow into c.

Below, the algorithm we call Neural Variational Identi-
fication and Filtering (NVIF) is described in pseudo-code.
Note that the algorithm recycles samples: In order to com-
pute w(z(i)|x1:t) samples of w(zt−1|x1:t−1) are required. In
order to avoid excessive sampling, for all i ∈ [1 .. N ], the
same set of samples from the previous time step are used to
compute w(z(i)|x1:t).

2Note that, for notational convenience, temporal dependencies are omit-
ted. In other words, this is also true for F2
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Algorithm 1 Neural Variational Identification and Filtering
for t ∈ [1 .. T ] do

for i ∈ [1 .. N ] do
z(i) ∼ q(zt|x1:t) . Sample w/o replacement
Compute p(xt, z(i)|x1:t−1) according to (8)

end for
Compute p̂(xt|x1:t−1) based on all z(i)

Compute and store w(z(i)|x1:t) based on (7) for all i
Gradient step to maximize F4 w.r.t. ψ and Θ

end for

5. EXPERIMENTS

As stated earlier, experiments are conducted in the context of
Non-Intrusive Load Monitoring on the REDD dataset [24]. In
the following, the dynamical system model and choice of aux-
iliary distribution are described. Note that the goal of this pa-
per is not to design the optimal model for appliance behavior
but to showcase a novel algorithm for learning and inference
in non-linear stochastic dynamical systems. However, as we
will show later, even though, the model of appliance behavior
is not refined, the model achieves results comparable to state
of the art algorithms.

Observed Variable Like in [12], instantaneous power wave-
forms extracted between zero-crossings constitute xt

Observation Because instantaneous power is an additive
quantity, pΘ(xt|zt) = N (xt;Wzt, σI) with W consti-
tuting unknown component waveforms.

Dynamics In order to suppress rapid switching of compo-
nents, dynamics are chosen that penalize the number
of components that switch: p(zt|zt−1) = S(||zt−zt−1||)∑C

j=0 (Cj )S(j)

with S assigning a penalty to each number of potential
switches. S is not learned but kept fixed, i.e. Θ = {W}

Aux. distribution We make use of the auxiliary distribution
introduced in [8]. Additionally, because temporal de-
pendencies are modeled, a recurrent Neural Network,
in particular an LSTM, is employed.

5.1. Results

The algorithm was run for 300 epochs and 15 components
(C = 15) were inferred. For all appliances provided as
ground truth, the component with the highest mean precision-
recall was chosen, just as in [25]. NVIF is compared to Var-
BOLT, another state-of-the-art VI-based model for FHMMs
that is considerably less scalable and makes application-
specific assumptions and NFHMM, a non-parametric frame-
work for unsupervised learning in FHMMs. Even though
VarBOLT is hand-tailored to NILM, NVIF shows comparable
performance with N = 500 as shown in Table 1.

However, the more important evaluation criterion is the
sample-efficiency, i.e. how many samples (N ) are required

(a) NVIF VarBOLT
Circuit
Microwave 100% / 0.1% 88.8% / 8.0%
Bath GFI 78.5% / 65.3% 71.9% / 40.2%
Electronics 90.7% / 41.2% 87.8% / 40.7%
Kitch. Out. 1 99.5% / 1.9% 8.6% / 32.8%
Furnace 66.4% / 54.2% 85.0% / 50.6%
Kitch. Out. 2 . 5.8% / 46.7% 5.3% / 70.1%
Washer/Dryer 89.5% / 64.1% 97.3% / 72.3%

(b) NFHMM VarBOLT NVIF
Overall panel 0.25 0.63 0.59

Table 1. (a) Performance compared to VarBOLT as measured
in Precision / Recall [25]. (b) Performance comparison with
NFHMM and VarBOLT in GSPA [26].

100 200 300 400 500
N

0.00

0.05

0.10

0.15

0.20

0.25

F 4

Fig. 1. Performance measured by F4 as a function of number
of samples N after convergence (300 epochs).

to achieve results comparable to EM if it were computation-
ally tractable. Note that because samples are drawn without
replacement, if N approaches 2C , NVIF becomes the EM-
algorithm. Increasing N is not expected to increase perfor-
mance beyond a given point and the question arises when this
point is reached.

Figure 1 shows F4 after convergence (300 epochs) for dif-
ferent numbers of samples N . One can see that the perfor-
mance saturates quickly. The increase in performance from
400 to 500 is minuscule. Thus, by only exploring only about
1− 2% of the latent space, NVIF achieves promising results.

6. CONCLUSION

To sum up, in this paper, an asymptotically unbiased (given
an appropriate choice of auxiliary distribution) algorithm for
learning and inference in dynamical systems was introduced
and evaluated in the context Non-Intrusive Load Monitoring.
The algorithm was shown to be sample-efficient and even
with a naı̈ve model of NILM showed comparable results to
existing algorithms. The introduced algorithm is general in
nature and could in principle be applied to any dynamical sys-
tem with binary latent variables and be generalized to contin-
uous latent variables by replacing the auxiliary distribution.
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