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ABSTRACT

Appliance fault in buildings resulting in abnormal energy con-
sumption is known as an anomaly. Traditionally, anomaly de-
tection is performed either at aggregate, i.e., meter-level, or at
appliance level. Meter-level anomaly detection does not identify
the anomaly-causing appliance, while appliance-level detection re-
quires submetering each appliance in the building. Non-Intrusive
Load Monitoring (NILM) has been proposed as an alternative to
submetering to detect when appliances are running as well as esti-
mate the appliance energy consumption. So far, applications have
revolved around meaningful energy feedback. In this paper, we
assess whether NILM can indeed be used for anomaly detection, as
an alternative to submetering. We propose a supervised anomaly
detection approach, AEM, and evaluate the effectiveness of NILM
for anomaly detection. The proposed approach first learns an appli-
ance’s normal operation and then monitors its energy consumption
for anomaly detection. We resort to real data, aggregate and subme-
tered data from the two-year long REFIT dataset. We explain why
anomaly detection performs worse with NILM data as compared
to submetered data, highlighting the need for new, anomaly-aware
NILM approaches.

Index Terms— NILM, energy disaggregation, anomaly detec-
tion, smart metering

1. INTRODUCTION

Whenever appliance energy consumption is statistically different
from usual, expected consumption, we say that load anomaly has
occurred. Some reasons for these anomalies include: the appliance
is not switched off after usage, the appliance experiences genuine
problems, such as malfunctioning due to age and/or wear and tear, or
mis-configured settings. For example, Fig. 1 shows two anomalies
in freezer usage. In each of these cases an appliance consumes more
energy than necessary, which could be due to, e.g., not closing the
freezer door appropriately or worn-out seal, and thus their timely
detection is important to provide appropriate energy saving advice,
such as appliance retrofit, replacement, or change of settings.

The anomaly detection problem is well investigated, and with
the emergence of smart grids and widespread use of smart meters,
load anomaly detection continues to remain in the research focus [1,
2, 3]. Smart meters, measuring aggregate household consumption,
allow online billing, facilitate demand response measures, and home
automation by logging energy consumption data at frequencies often
in the order of seconds. Existing smart meter-based anomaly detec-
tion approaches only detect anomalies at aggregate, household-level
and does not identify the anomaly causing appliance [1, 2, 3]. Iden-
tifying timely anomalous appliances can reduce energy wastage and
appliance breakdown time [4]; however, so far, it has required the
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Fig. 1: Power consumption signatures of a freezer. Thin dashed blue
lines show appliance’s normal working pattern and thick solid black
lines show consumption on an anomalous day. On an anomalous
day, either appliance took longer ON cycles (Fig. a) or remained
ON throughout the day (Fig. b) as highlighted by red rectangles.

use of submetered data at appliance level, which is a massive over-
head due to a combination of installation, maintenance, communi-
cations, storage, and data validity checks. While an argument can
be made for IoT-enabled appliances providing condition monitoring
statistics, only a minority of the world population will have access
to these and therefore extracting (appliance-level) information from
the smart-meter is more viable as a sustainable solution.

Non-Intrusive Load Monitoring (NILM) [5], an algorithmic en-
ergy disaggregation approach, has been used to infer individual ap-
pliance’s consumption using smart metered energy data. Over the
years, the NILM research community has shown improvement in the
appliance classification accuracy demonstrating that NILM is suit-
able for numerous applications, ranging from demand response and
energy feedback to activity recognition [5, 6, 7, 8].

Building on the success of NILM over the past few years [7, 8],
this paper explores the usability of state-of-the-art NILM methods
for appliance’s anomaly detection. Towards this, we propose an
anomaly detection approach, namely, Appliance Energy Monitor
(AEM) for detecting anomalies at an appliance level, which first
builds a model of an appliance load by training on normal opera-
tion electrical measurements, and then monitors energy consumption
of appliance for anomalies using a built-in training model. We test
AEM’s usability on UK’s publicly available dataset, REFIT [9].

Contributions are: (i) an anomaly detection approach that works
on NILM and submetered data. Testing on submetered data reports
its baseline performance whereas testing on NILM data shows the
usability of NILM for identifying anomalous appliances. (ii) a post-
processing algorithm for improving anomaly detection capability of
traditional NILM. (iii) release of a publicly annotated anomalies of
the REFIT dataset [10]. Presently, no such detailed annotations are
publicly available for any electrical load measurement datasets.
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Fig. 2: Submetered (top), NILM (middle) and NILM post-
processed (bottom) data.

2. RELATED WORK

Detecting anomalies by monitoring the energy consumption of an
appliance over some time has been the subject of research. For ex-
ample, Ganu et al. [11] first create appliance specific energy models
of several high energy consuming appliances and then use built mod-
els to identify anomalies. Similarly, Pereira et al. [12] use clustering
to identify anomalies by comparing the usage of an appliance along
a period. However, such approaches are cumbersome as separate in-
trusive data collection kit is required for each appliance in a home.
[1, 2, 3] propose different anomaly detection approaches using ag-
gregate smart meter data. These approaches detect anomalies but are
unable to identify the anomaly causing appliance.

NILM techniques provide the breakdown of smart meter data
into individual appliances consumption. Previously, NILM has been
used for identifying faults in isolated systems such as waste-disposal
and HVAC [13, 14, 15]. Over the years, NILM’s accuracy improved
significantly, and according to [16], NILM outputs can be used for
anomaly detection, but empirical evaluation has not been performed
yet on building’s aggregate meter data.

To the best of our knowledge, this paper is the first to evaluate the
suitability of building’s smart metered NILM data for anomaly de-
tection. We presented the preliminary version of this work at ACM
BuildSys [17, 18]. This work differs from the previous version in
the following ways: (i) It is done on actual anomalies present in
the dataset while [17, 18] was done on artificially injected anoma-
lies, (ii) It uses a real-world energy dataset (REFIT [9]) for eval-
uation, while the previous version uses synthesized anomalies on
USA energy Dataport [19], (iii) This work targets three appliances
(Fridge, Freezer and Heater) as compared to two appliances (Air
conditioner & Fridge) used in the previous version (iv) Current work
proposes post-processing of NILM result for improved anomaly de-
tection, while the previous version only directly applied the anomaly
detection on NILM data.

3. METHODOLOGY

We focus on appliances that periodically pass through two cycles
during their operation, i.e., appliances that have ON cycle followed
by an OFF cycle, such as refrigerator, freezer, electric heater etc.

The analysis of cyclical appliances shows that anomalies are
reflected in the appliance signature in two ways: (i) the appliance
has a longer on duration, possibly due to appliance malfunction-
ing, fridge/freezer door left open, cracked door, or mis-configured
settings [11]; (ii) the appliance goes through a significantly higher

number of cycles as compared to normal operation [20]. This is due
to appliance malfunctioning, due to age or a fault.

In the first case, the energy consumed in an anomalous cycle
is usually significantly higher than in the normal cycles and in the
second case, the number of cycles in a specific time duration will be
significantly higher. With these two scenarios, we create a rule-based
anomaly detection algorithm, namely AEM, for cyclical appliances.

AEM works in two phases - training and testing. In the training
phase, it learns an appliance’s power consumption signature during
normal operation and computes average energy consumed by an ap-
pliance’s ON cycle and the number of cycles by the appliance in a
specific time. In the testing phase, it firstly computes the mentioned
parameters of the power consumption of the test day and then com-
pares these with the statistics computed during the training phase. A
deviation observed in any value is flagged as an anomaly. Next, we
formally describe each of these two phases.
Training Phase: First, power consumption readings of an appliance
for D normal days are collected. For each day, Di, we count the
number of cycles taken by an appliance as ci, and compute energy
consumption of different cycles as vector ei, whose size is ci. Next,
using the computed statistics of D days, average number of cycles
Ctrain and energy per cycle Etrain are computed as:

Ctrain = mean(ci), i ∈ {1, . . . , D} (1)

σC
train = std(ci), i ∈ {1, . . . , D}, (2)

Etrain = mean(ei), i ∈ {1, . . . , D}, (3)

σE
train = std(ei), i ∈ {1, . . . , D}, (4)

where σC
train and σE

train represent standard deviation of the number
of cycles and energy consumption per cycle, respectively.
Testing Phase: In this phase, AEM takes power consumption signa-
ture of the appliance during the target test day and computes statistics
Ctest and Etest as above. Next, it uses the following set of rules to
flag anomalies:
Rule # 1: If the average energy consumption of the test day cycles
is significantly greater than the train day cycles, i.e.,

Etest > α ∗ (Etrain + n ∗ σE
train), (5)

where n is the number of standard deviations and α is the number of
times energy consumption on a test day deviates from the ‘normal’.
Rule # 2: If the number of cycles taken by appliance on the test day
is significantly greater than the train day cycles

Ctest > Ctrain + n ∗ σC
train. (6)

We use five different well-known NILM algorithms to obtain
the appliance-level NILM data from the aggregate smart meter
data. These include Combinatorial Optimization (CO) [5], Factorial
Hidden Markov Model (FHMM) [21], Latent Bayesian Modeling
(LBM) [22], Super-state Hidden Markov Model (SSHMM) [23],
and Graph-based Signal Processing (GSP) [8]. All of these are
publicly available and are considered state of the art.

3.1. NILM signal post-processing (Algorithm 1)

The top two panels of Fig. 2 show submetered and NILM data
obtained with SSHMM [23]. We can see that NILM often de-
tects events but gets confused with the ON-OFF cycle frequency.
AEM detects anomalies by monitoring the average energy con-
sumption of each cycle. So, using NILM data as such will result in
wrong anomaly results. To avoid this, we post-process NILM signal
first and then AEM uses post-processed data for anomaly detection.
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Case Action 1 Action 2

• Appliance’s consumption found significantly different from its his-
torical normal consumption

Flagged as anomalous and marked
as S (sure)

Noted time-duration of
anomaly

• Appliance’s consumption found significantly different from its his-
torical normal consumption, but anomalous duration seems to be due
to sensor malfunctioning

Flagged as anomalous and marked
as NS (not-sure)

Noted time-duration of
anomaly

•Appliance’s ON cycle duration found significantly longer than its his-
torical consumption and the predecessor OFF cycle also found longer.

Not marked as anomaly as it is
normal in considered appliances

Nothing

Table 1: Rules for marking anomalies in REFIT dataset.

Input: Appliance’s submetered power consumption
Ymetered of D normal days and NILM data of the
appliance Ynilm

Output: Post-processed NILM data, Yprocessed

1 Compute duration di of each OFF cycle in Ymetered, where
i ∈ {1, · · · , H}; H is the number of cycles in D
consumption days

2 Compute mean, dmetered, and standard deviation, σd
metered,

over all di
3 for j ← 1 to number of OFF cycles in Ynilm do
4 Compute duration djnilm of jth OFF cycle
5 if djnilm < (dmeterd − 2 ∗ σd

metered) then
6 Find first and last readings of djnilm as of and ol
7 dintpol

nilm ← Interpolate linearly all readings between
of & ol

8 Update Ynilm with dintpol
nilm

9 end
10 end
11 Yprocessed ← Ynilm

12 return Yprocessed

Algorithm 1: Steps in post-processing NILM data.

Post-processing comprises two steps: (1) Calculate average
duration dmetered and standard deviation σd

metered, as per Algo-
rithm 1, of all OFF cycles in submetered data Ymetered of target
appliance. (2) Take and Calculate the OFF duration djnilm of each
jth cycle from NILM data Ynilm. If the OFF duration is signifi-
cantly less than dmetered, the “first” and “last” readings of the OFF
duration are identified and then in-between readings are linearly
interpolated as explained in the algorithm, resulting in removal of
high frequency cycles introduced by NILM and in a form now suited
for anomaly detection. This is shown in the bottom panel of Fig. 2.

4. EVALUATION

All experiments were conducted on the REFIT dataset [9], com-
prising household aggregate and appliance’s submetered power con-
sumption data of 20 UK homes for about two years. The default
sampling rate of the data is eight seconds, but was uniformly down-
sampled to one-minute. Out of 20 homes, Houses 1, 10, 16, 18
and 20 had the largest number of detected anomalies and were se-
lected. We selected four months of data from each of these homes in
such way that one month did not contain any anomaly and remaining
three contain anomalies. The entire REFIT dataset was searched for
anomalies, using rules defined in Table 1, for a whole month. The
identified anomalies for all affected appliances were labelled as per
the latter rules in a separate CSV file [10].
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Fig. 3: Different metrics of NILM approaches on heater (Home1)
and Freezer (Homes 10, 16, 18 and 20). RMSE (top), Pearson cor-
relation coefficient (bottom). [Best viewed in color]

Disaggregation performance of NILM algorithms is presented
using Root Mean Squared Error (RMSE) and Pearson Correlation
Coefficient metrics. RMSE shows the difference between estimated
and actual readings, and Pearson coefficient measures the correla-
tion between appliance’s submetered (s) and predicted (p) NILM
readings.

ρs,p =
cov(s, p)

σsσp
, (7)

where cov is covariance, σs and σp are the standard deviation of s
and p. The value of ρs,p varies in the range [-1, 1], where -1 means
either s readings increase and p readings decrease or vice versa.
Experimental settings: For supervised NILM algorithms - CO,
FHMM, LBM and SSHMM, one month of data was used for train-
ing and the remaining months for testing. Testing was done in a
sliding-window manner with a window size of one day. There-
fore, one month of training data was appropriate for one day of test
data. Publicly available implementations of CO and FHMM from
NILMTK toolkit [24], LBM [25], SSHMM [26], and GSP [27] were
used to get disaggregation results.

To avoid evaluation bias, all NILM algorithms were run with
default parameter settings as mentioned by their respective authors.
For GSP, the appliance threshold was set to 40 Watts obtained em-
pirically since the wattage was above 40 Watts for all appliances in
the considered dataset.
Disaggregation performance: Fig. 3(top) shows RMSE of differ-
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Precis. 0.7 0.1 0.1 0.01 0.1 0.14 1 0 0.5 0 0.5 0.5 0.9 0 0.25 0.2 0.3 0.2 1 0 0.04 0.07 0.04 0.04 1 0.5 0.3 0.14 0.11 0.13
Recall 1.0 1.0 1.0 1.00 1.0 1 1 0 0.9 0 1 0.6 0.9 0 1 0.5 1 0.6 0.7 0 1 0.67 1 1 0.6 0.1 0.5 0.5 1 0.6
Fscore 0.8 0.2 0.2 0.15 0.2 0.25 1 0 0.7 0 0.7 0.5 0.9 0 0.4 0.3 0.4 0.3 0.8 0 0.08 0.13 0.08 0.08 0.7 0.17 0.3 0.22 0.2 0.21

Table 2: Precision, Recall and Fscore for AEM with post processed NILM data.
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Precision 0.7 0.1 0.1 0.08 0.1 0.14 1 0 0.6 0 0 0 0.9 0 0 0.23 0 0.24 1 0 0 0.06 0 0.04 1 0 0.33 0.13 0 0.33
Recall 1.0 1.0 1.0 1.00 1.0 1 1 0 0.27 0 0 0 0.9 0 0 0.43 0 0.48 0.7 0 0 0.33 0 1 0.6 0 0.3 0.4 0 0.1
Fscore 0.8 0.2 0.2 0.15 0.2 0.25 1 0 0.37 0 0 0 0.9 0 0 0.3 0 0.32 0.8 0 0 0.1 0 0.08 0.7 0 0.31 0.2 0 0.15

Table 3: Precision, Recall and Fscore for AEM without post processing of NILM data

ent NILM approaches on target (Heater in Home 1 and Freezer in re-
maining homes) appliances of five homes. Electric heater in Home1
has wattage > 1 kW, so RMSE values are higher than that of freezer
of remaining homes. The appliance of Home 10 has lowest RMSE
as compared to appliances of Homes 16, 18 and 20 because it has
only one freezer as compared to two freezers found in remaining
homes. Having appliances of distinct wattages decreases RMSE.
Fig. 3(bottom) shows the Pearson correlation Coefficient of target
appliances of five homes with different disaggregation approaches.
Electric heater of Home 1 has highest correlation coefficient due to
its distinct higher wattage as compared to appliances of other homes.

Overall, Fig. 3 show that NILM algorithms perform best in
Home 10, followed by Home 20 and 16 in terms of lower RMSE and
higher correlation coefficient. We expect to obtain better anomaly
detection results for these houses.
Anomaly detection performance with NILM: For each target ap-
pliance (heater in home 1 and freezer in remaining homes), we use
post processed NILM data (see Algorithm 1) of all approaches and
submetered data to compute and compare the anomaly detection ac-
curacies. Accuracy results obtained on submetered data are con-
sidered as baseline results. The NILM approach providing closest
match to submetered data results is considered as the best NILM
approach for appliance level anomaly detection.

Table 2 reports precision, recall and F-score of AEM with both
submetered and five different post processed NILM data of target
appliances. We infer the following from the table:

1. Recall is found to be better than precision for every home,
meaning there are less false negatives as compared to false
positives. A false positive results whenever NILM signature
deviates significantly from the actual energy consumption and
the deviation found matches to an anomaly signature, while
false negative means missing the true anomaly.

2. The best results are obtained for Home 10, which is aligned
with the fact that the performance of the NILM algorithms
was the best for this house (see Fig. 3).

3. AEM results in an acceptable Fscore (≥ 0.8) on submetered
data, and significantly lower F-score on using NILM output
obtained with different approaches. Lower Precision results
in the drop of Fscore and low Fscore on NILM data as com-
pared to submetered data means AEM does not perform well
on NILM output. This shows that NILM data of Freezer
and Heater obtained with existing state-of-the-art NILM ap-
proaches cannot be used for anomaly detection.

We computed similar accuracy metrics on unprocessed NILM

data too to show the improvement in F-score after post processing of
NILM data. Table 3 shows precision, recall and F-score of different
approaches on using unprocessed NILM data. Comparing Fscore of
Table 2 and 3 we find post processing has improved results signifi-
cantly, particularly for FHMM and SSHMM approaches. With post
processing, AEM is able to flag all genuine anomalies.

5. CONCLUSION & FUTURE WORK

This paper reports detailed experiments to assess whether cur-
rent state-of-the-art NILM algorithms outputs can be used for
appliance-level anomaly detection. We conclude that appliance-level
anomalies cannot be detected using NILM data directly because the
appliance-level NILM signatures do not resemble submetered sig-
natures since NILM algorithms are trained on normal appliance
operation. While the obvious solution would be to train NILM
algorithms with anomalous signatures, this is challenging because
each appliance results in a different anomalous signature depending
on the cause of the anomaly and knowing all anomalies signatures
a priori is not always realistic. We also analyze the output of the
NILM algorithms to understand the cause of the poor anomaly de-
tection performance, and while the anomalies are detected, there is
some confusion in detecting the events accurately with current met-
rics because of the frequency of the ON-OFF cycles. We propose
a post-processing algorithm of NILM outputs to improve anomaly
detection accuracy and show improved accuracy. There are two
directions for future work: (1) developing novel anomaly detec-
tion rules that are suitable for NILM-based detection; (2) designing
anomaly-aware NILM algorithms, without relying on learning nor-
mal operation load signatures.
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