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ABSTRACT

In this paper, we propose a compressed domain fire detec-
tion algorithm using macroblock types and Markov Model in
H.264 video. Compressed domain method does not require
decoding to pixel domain, instead a syntax parser extracts
syntax elements which are only available in compressed
domain. Our method extracts only macroblock type and cor-
responding macroblock address information. Markov model
with fire and non-fire models are evaluated using offline-
trained data. Our experiments show that the algorithm is
able to detect and identify fire event in compressed domain
successfully, despite a small chunk of data is used in the
process.

Index Terms— fire detection, compressed domain, mac-
roblock type, H.264/AVC

1. INTRODUCTION

Today, the majority of computer vision applications in video
analysis are carried out by detecting and extracting compact
and robust features in pixel domain. With the recent improve-
ments in imaging and camera sensor technologies in terms of
video resolution, the amount of data in computation follows
an increasing trend. This increases the computational bur-
den of real-time video processing applications such as object
detection, tracking and retrieval. On the other hand, compu-
tational overhead due to considerable amount of data in the
pixel domain can be effectively reduced by transferring the
computation to the compressed domain. Performing analysis
in the compressed domain also eliminates the computation
cost of decoding phase, which is necessary in conventional
pixel level analysis. In this work, we propose a novel fire
detection method in H.264 compressed domain by modelling
transitions between selected groups of macroblock types and
parameters using a Markov model.

With the increasing use of compressed data over the past
decades, compressed video analysis has been applied on var-
ious vision tasks including moving object segmentation [1,
2, 3], person detection [4], object tracking [4, 5] and face
detection [6]. In [1], a moving object detection method in
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2017-40964.

wavelet compressed domain was presented by comparing the
wavelet transform (WT) of adjacent frames without comput-
ing inverse WT’s of the image frames.

Laumer et al. [3] proposed an algorithm to detect moving
regions within video frames by extracting and parsing mac-
roblock types, partition modes and quantization parameters
(QP). Zhao et al. [7] proposed a moving object classification
method in HEVC compressed domain based on a codebook
learning of spatio-temporal HEVC syntax words. They first
detected moving regions by performing motion vector (MV)
interpolation for intra-coded prediction unit followed by re-
moval of the MV outliers and grouping of non-zero MVs.
After the moving object segmentation step, they used predic-
tion modes, length of MVs and MV difference as HEVC syn-
tax features to construct a bag of words learning model. Our
method, however, exploits only temporal macroblock patterns
of moving fire regions in H.264 domain, which has a less
computational complexity. An extensive survey about the ad-
vances in fire detection algorithms was presented by Çetin et
al. [8], in which both the pixel level and compressed domain
algorithms as well as the uses of different types of sensors and
hardware were explored.

A recent survey on compressed domain video analysis
was done by Babu et al. [9] which included more exten-
sive information about the advances through the past decade.
In [10], hidden-Markov model based fire detection algorithm
was proposed by means of observing rapid temporal varia-
tion over the boundaries of flame regions in a video. Apart
from fire detection in compressed domain, Benazza et al. [11]
proposed a smoke detection method in MJPEG and MPEG2
videos by exploiting the recursivity of the DCT coefficients
with respect to block size. More recently, a hidden-Markov
model based method for fire detection in wavelet compressed
domain was proposed in [12]. In [13], an experimentally-
defined reduced complexity deep Convolutional Neural Net-
work (CNN) architectures were proposed for fire detection of
a video or an image without using any temporal information.

In contrast, our work is focusing on H.264 compressed
domain by exploiting the macroblock transition patterns of
fire motion by means of a Markov model. In this work, our
main contribution is a novel fire detection method for the
H.264 compressed domain using only temporal macroblock
patterns.
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The rest of the paper is organized as follows: Section 2 in-
troduces the related syntax of the H.264/AVC standard. Sec-
tion 3 describes the learning structure of the Markov model.
In Section 4, we discuss the performance of the proposed
method in the experiments. We draw our conclusions and
elaborate on the future improvements in Section 5.
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Fig. 1. Macroblock structures of the H.264/AVC standard.

2. SYNTAX OF H.264/AVC

This section gives a brief overview of H.264/AVC which
provides only the relevant syntax elements of this work.
H.264/AVC is a block-based video compression standard. In
H.264/AVC, rather than encoding a picture as a whole, each
frame is divided into square blocks and each of these blocks
is encoded independently. These blocks are known as mac-
roblocks, which consist of 16x16 pixels. Several numbers of
macroblocks grouped together to shape a slice. Each frame
has at least one slice. H.264 defines five slice types: I, P, B,
SI and SP.

Every slice is coded as Intra Slice (I Slice), Predicted
Slice (P Slice), or Bi-Directional Predicted Slice (B Slice).
SI and SP slices also called switching slices can be used for
transitions between H.264 video streams. Both are not very
commonly used. A slice consists of several consecutive mac-
roblocks. Each macroblock can be divided into smaller blocks
of 4x4 pixels which are called sub-macroblocks. Fig. 1 gives
a generic representation of the data elements in a video se-
quence.

3. METHOD

General scheme of the proposed method can be seen from the
flowchart in the Fig.2. At first, we create training data from
fire and non-fire motion videos. Macroblocks which contain
partial fire information are trained offline to learn the tempo-
ral characteristics of fire, mainly at the fire borders. Specif-
ically, the procedure is used to capture fire flicker process.
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H.264 Video 

Parsing MBs

Temporal 

processing of MBs

Fire detection

Markov Model Training

Trained Fire and 

Non-fire Markov 

Models 

Temporally 

Pre-processing MBs

Training Data
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Fig. 2. Overall flow chart of the proposed method.

Furthermore, non-fire macroblocks are also trained in a simi-
lar fashion to separate real fire from non-fire moving objects.
Thereafter, a seven states Markov model is used in an effort
to calculate the transition probabilities between specific mac-
roblock types to capture temporal characteristics of the fire
and non-fire models. That concludes the method to create fire
and non-fire Markov models.

Next, compressed H.264 videos are parsed and only the
syntax elements which are related to this work are extracted.
Extracting the syntax elements is achieved by integrating the
JM software, which is the reference software for H.264/AVC
video standard.[14]. As this work solely focuses on the mac-
roblocks, only macroblock syntax elements and correspond-
ing macroblock addresses are extracted. Then, every mac-
roblock address and its type information are parsed frame by
frame throughout the video. Hence, the temporal processing
of macroblock type information is obtained for the next phase,
which is the detection of fire.

In fire detection process, specific macroblock types are set
to seven Markov states to determine whether a macroblock is
in the fire or non-fire type. Table 1 shows all the states and
their corresponding macroblock types that we proposed in this
work. S1 and S2 states are classified for Intra-frame predicted
macroblock types I 4x4,I 16x16 which are available in I and
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Table 1. Markov Model States Table

State No Macroblock Type
State 1 I 4x4
State 2 I 16x16
State 3 P 8x8
State 4 {P 8x16, P 16x8}
State 5 P 16x16
State 6 P SKIP
State 7 Other MB Types

P slices. In this work, we only consider H.264 Baseline pro-
file in which I and P slices are possible whereas B slices are
not allowed. Intra-coded macroblocks are available in both I
slices and P slices. If relevant information does not exist in
previous frames, H.264 encoder uses I 4x4 and I 16x16 mac-
roblocks. Thus, existence of I 4x4 and I 16x16 exhibits a fast
motion in P slice.

S3, S4, S5 states are classified for macroblock types of
P 8x8, {P 8x16, P 16x8}, and P 16x16, respectively. If there
is a small change in the current frame compared to the pre-
vious frame, H.264 encoder uses 8x8, 8x16, and 16x8 mac-
roblocks. This indicates the presence of a moving object in
a particular area of the frame. In addition, P 16x16 mac-
roblock also shows possible existence of a slow movement,
so that H.264 encoder determines not to divide it into smaller
sub-macroblocks.

S6 state is classified for P SKIP category of a macroblock
which indicates most likely no motion at all. Specifically,
macroblock P SKIP indicates that no additional data is avail-
able in that macroblock. H.264 Encoder decides if there is
no difference between current and previous frames for a mac-
roblock, it is set to a P SKIP macroblock. S7 state is classi-
fied as the remaining macroblock types which are considered
irrelevant to this work.

4. EXPERIMENTAL RESULTS

The experiments are performed on a Mac OSX 10.13.6 High
Sierra computer with 3.40 GHz Intel Core i7-4770 CPU and
16 GB RAM. The performance of the proposed method is
tested on several videos. Sample results of the fire detection
yield from our method is given in Fig. 3. We classify a frame
as fire frame if at least one mabroblock is detected as fire cor-
rectly.

Our algorithm can detect fire, especially fire flicker pro-
cess which occurs at the borders of the fire. As a by product,
some smoke elements is also detected, which exhibits similar
behaviour like fire flicker process. Detection performance on
different videos are presented in Table 2. In our algorithm,
we used a window length parameter in an effort to evalu-
ate the performance of the detection algorithm for different

Fig. 3. Sample fire detection result from the ’Video 3’: MBs
detected as fire are marked with red rectangles.

time frames. In fact, window length stores macroblock types
that changes in every 8, 10 , 15, and 20 frames. Transition
probabilities for every window length is calculated using of-
fline trained data. If fire probability is higher than non-fire,
then it is fire macroblock between that window length. Every
macroblock is processed in this context to classify fire mac-
roblocks. Table 2 shows 5 different videos which are evalu-
ated using 4 different window length values.

In the first video, there is no fire information, thus our
algorithm successfully skip all the frames for all window
lengths. In second video, we have a scene that a man is
walking and waves hitting to the beach. Our algorithm in
this case, successfully skips non-fire information for window
length 10, 15, and 20. However, when window length is 8,
248 frame falsely detected as fire macroblock due to wave
motion behavior. Video 3, 4, and 5 contain only fire scenes.
Our algorithm’s performance on these videos varies over
different window lengths which are depicted in Table 2.

We also perform quantitative analysis of the our algorithm
on the macroblock level accuracy. The result of the mac-
roblock level experiments is given in the Table 3. At first,
for each frame k, we manually label ground truth of the set
of macroblocks Smb[k] of the fire regions. Then, we com-
pute precision, recall and F-score metrics for testing the per-
formance of the proposed method as given in the following
equations:

P =
Smb
tp [k]

Smb
tp [k] + Smb

fp [k]
, (1)

R =
Smb
tp [k]

Smb
tp [k] + Smb

fn [k]
, (2)

F =
2× P ×R
P +R

, (3)

where P , R and F denote the precision, recall and F-score.
Moreover, Smb

tp [k], Smb
fp [k] and Smb

fn [k] stand for the number
of true positives (TP), false positives (FP) and false negatives
(FN) in the set of macroblocks, respectively.
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Table 2. Detection performance of the proposed method on different videos.

Video Sequences Number of Frames Number of Frames
with Fire Window Length Number of Frames

Detected as Fire Description

Video 1 545 0

8 0

girl Walking Down10 0
15 0
20 0

Video 2 840 0

8 248

man walking on a beach10 0
15 0
20 0

Video 3 870 870

8 869

summer grass is burning10 777
15 499
20 293

Video 4 465 465

8 465

wild brush and grass is burning10 465
15 465
20 397

Video5 187 187

8 156

wood fire10 126
15 68
20 37

Table 3. Macroblock level result of the proposed method.

Video name TP FP TN FN Precision Recall F-score
Video 6 478 6 91449 59 0.99 0.89 0.94

Table 4. Comparison of our method with two other methods.

Method TP FP TN FN Precision Recall F-score
FireNet [13] 698 841 544 824 0.45 0.46 0.46

InceptionV1-OnFire [13] 613 820 565 909 0.43 0.40 0.42
Ours 1368 248 1137 154 0.85 0.90 0.87

We compared our performance with two architectures in
[13] using our test data. FireNet and InceptionV1-OnFire are
both pixel domain, reduced complexity deep CNN architec-
tures which are not using any temporal information. The re-
sults are presented in Table 4. Number of true positives, false
positives, true negatives and false negatives are denoted as
TP, FP, TN and FN, respectively. We used all of the five test
videos in total of 2907 frames and evaluated the performances
on the frame level. More precisely, our method detects a fire
alarm based on if any macroblock is detected as fire on a
frame. Our method performs significantly better than the two
variations of the deep neural network architectures, FireNet
and InceptionV1-OnFire, namely.

5. CONCLUSION

In this paper, we introduce a novel compressed domain fire
detection algorithm using a Markov model. The temporal pro-

cess extracts macroblock types, corresponding coordinates as
well as macroblock addresses from H.264/AVC syntax ele-
ments. Macroblock type is temporally processed and fire and
non-fire Markov models are developed. The proposed model
detects especially fire flicker process using the model infor-
mation. Simulation results show that even though we only use
macroblock type from syntax elements, we managed to iden-
tify fire regions reliably within the H.264 videos without the
necessity of a decoding phase. Furthermore, we measure our
performance by comparing with FireNet and InceptionV1-
OnFire which are pixel based, non-temporal, reduced com-
plexity deep CNN architectures. Our compressed domain
method shows considerably better performance than the other
two pixel domain architectures. For the future work, the pro-
posed system can be further improved by using the spatio-
temporal information based on the DCT coefficients and MVs
as a future work. We also plan to focus on the analysis of the
additional syntax elements to achieve more accurate results in
the future.
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