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ABSTRACT 

 

Invasive insect pests and fungi, which are introduced 

accidentally to forests and affect tree growth and survival, 

constitute a serious threat for the forests and trees acting on 

climate change and its impacts. Thus, the need for early and 

accurate health determination process of forest regions, has 

significantly increased the interest in automatic monitoring 

methods. In this paper, in order to overcome the great variety 

of trees’ characteristics and forests’ heterogeneity that affects 

the diversity of their color and texture making the detection 

of diseases a difficult task, a methodology for individual tree 

detection applying energy minimization, visualizing HOG 

features across tree canopies and using a dynamically 

clustering method is proposed. Then, in order to achieve 

classification based on their health condition, multi-pyramid 

textural features are proposed and extracted. The 

experimental results presented use images of a forest area in 

Greece that include fir trees and show the great potential of 

the proposed methodology. 

 

Index Terms— Remote sensing, forest monitoring, tree 

diseases detection, forest health surveillance 

 

1. INTRODUCTION 

 

The environmental challenges the world faces nowadays 

have never been greater or more complex. Natural 

disturbances and disasters in conjunction with climate change 

give rise to the population of insect pests and fungi [20] and 

simultaneously reduce the resilience of forest ecosystems and 

their capacity to deliver essential services. Generally, trees 

purify the air, modify ambient temperatures, reduce storm 

water runoff, and make cities nice places to live [11]. To this 

end, it is necessary to efficiently protect trees and forests, by 

the occurrence of natural disturbances such as the 

aforementioned threats and in this way to maximize the role 

of nature in absorbing and avoiding greenhouse gas 

emissions.  

Traditionally, experts recognize tree diseases by 

measuring and identifying visually irregularities of trees. The 

main challenge lies in the great variety of trees’ 

characteristics and forests’ heterogeneity that affects the 

diversity of their color, texture and thus aesthetic properties 

making the detection of diseases a difficult task. Indeed, 

sometimes only a limited number of infected trees are found 

by visual inspection, with the remainder being detected only 

after they have fallen [26]. Furthermore, the needs of 

reducing the cost and time required to be spent for the training 

of staff to achieve the necessary skills and expertise to 

accomplish this health determination process, has 

significantly increased the research interest in remote sensing 

and automatic forest monitoring methods. 

Remote sensing technologies combined with computer-

aided signal and image analysis has become one of the major 

research subjects in forest surveillance [23]. Numerous 

approaches for environmental monitoring have been 

proposed recently to assist foresters and experts in the early 

detection of natural hazards and disturbances [8]. To date, 

most researchers have attempted to address the remote 

species identification and disease recognition challenge using 

expensive and customized multispectral cameras and 

estimating health indicators features [6]. Furthermore, in 

order to extract more spectral bands, researchers have 

exploited the significant role of hyperspectral cameras and 

Fabry-Pérot interferometer (FPI) technology [18], [19]. 

However, all the previously computer-based methods for 

forest health surveillance suffer from some limitations. Most 

of the approaches use ground sensors or require expensive 

and specialized hardware (e.g. using small Cessna-type 

aircraft platform), with complex standard protocols for data 

collection and complex analysis methods [14], [22], limiting 

their potential eventual widespread use by local authorities, 

forest agencies and experts.  

In this paper we present an accurate and affordable 

approach to detect individual trees and identify their health 

condition through UAV data in an operationally, time and 

power cost efficient manner. Specifically, we propose the 

segmentation of trees applying an energy minimization 

approach and localization of top parts of trees combining the 

visualized feature space of HOG descriptors and a 

dynamically clustering method. Then, in order to rate the 

health of trees based on the appearance and dynamics of their 

canopies we propose and extract multi-pyramid (multi-scale 
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and multi-orientation) textural features using linear 

dynamical systems. To evaluate the efficiency of the 

proposed methodology, we created a dataset of fifty images, 

consisting by fir trees. 

This paper is organized as follows. Section 2 details the 

proposed methodology. Experiments are presented in section 

3 and finally, discussion and conclusions are provided in 

section 4. 

2. METHODOLOGY 

 

The framework of the proposed methodology is shown in Fig. 

1. In this, a commercial quadcopter mid-priced UAV is used 

to capture forest areas. For the segmentation of trees in the 

captured images, we apply an energy minimization approach 

based on graph cuts. Then, we estimate the visualized feature 

space of HOG descriptors noticing that higher layers of a tree 

appear brighter white than the lower layers in the HOG-based 

visual world. Subsequently, in order to split the overlapped 

trees and to identify their top parts, a dynamically clustering 

method is applied. Finally, we apply a novel multi-pyramid 

feature extraction approach and classify the identified trees in 

the following categories: a) trees with normal appearance, b) 

trees with total or partial defoliation and c) decolorized trees.  

 

 
Figure 1. The proposed methodology 

 

2.1. Individual tree identification 

 

2.1.1. Trees segmentation 

 

For the segmentation of trees in an aerial image (Fig. 2a), an 

unsupervised energy minimization technique that is based on 

graph cuts was applied [16]. In this labeling problem, the 

image is represented as a graph 𝐺 = 〈𝑉, 𝐸〉, where 𝑉 is the set 

of all nodes and 𝐸 is the set of all edges connecting adjacent 

nodes. Nodes and edges correspond to pixels and their 

adjacency relationship, respectively. The graph also contains 

two terminal nodes, which are referred to as the source and 

the sink. The labeling problem is to assign a unique label 𝑥𝑝 

for each node 𝑉, so as to minimize the following energy: 
 

 𝐸 = ∑ 𝐶𝑝(𝑥𝑝)

𝑝∈𝑉

+ ∑ 𝑆𝑝,𝑞(𝑥𝑝, 𝑥𝑞)

(𝑝,𝑞)∈𝐸

 (1) 

where 𝐶𝑝 is the color consistency cost which depends on the 

label 𝑥𝑝. The 𝑆𝑝,𝑞 is the smoothing cost between two 

neighboring pixels (𝑝, 𝑞) and it depends on the labels 

(𝑥𝑝 , 𝑥𝑞). The cost of the cut which partitions the graph into 

two disjoined subsets, is defined to be the sum of weights of 

the edges crossing the cut, whereas the minimum cut problem 

is to find the cut with the minimum cost, that minimizes the 

energy either globally or locally. The algorithm results the 

labeling that minimizes the energy of Eq. (1) leading to the 

segmentation of canopy parts of trees, of lower parts of trees 

and soil. Then, we used the four central moments rejecting 

the part of image that represent the soil (Fig. 2b). For the 

initialization of the algorithm, a k-means approach was 

adopted for assigning an initial label to each pixel. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2. Methodology of the individual tree identification: 

a) UAV captured image, b) trees segmentation c) extraction 

of HOG features d) visualized feature space of HOG 

features e) mask of trees f) estimation of top parts of trees. 

 

2.1.2. Localization of the top parts of trees 

 

Using satellite or airborne remote sensing technology, the 

localization of the top part or layer of a tree of a canopy, 

which is composed of branches and leaves or needles is a 

significant process especially when dealing with tree health 

issues that are, in many cases, firstly become visible in these 

parts of trees [17]. To this end, after the initial segmentation 

and in order to find the points of the top parts of tree canopies 

the proposed methodology consists of two main steps: a) the 

estimation of mask of trees and b) the dynamically 

localization of trees.  

As HOG features (Fig. 2c) are changing for the different 

layers of trees in aerial photography [25], we used 
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visualization of HOG descriptor ℎ ∈ ℝ𝑑, where the 𝑑 is the 

size of it, in order to achieve their separation. Specifically, we 

jointly calculate a couple of bases for each image and HOG 

descriptor [24] with shared coefficients 𝛼 ∈ ℝ𝐿  using a super 

resolution sparse coding approach and sparse modeling 

software optimization. Given a pair of bases 𝑈(𝑡) ∈ ℝ𝐷×𝐿 

and 𝑉(𝑡) ∈ ℝ𝑑×𝐿 the image and the HOG descriptor can be 

decomposed as follows: 
 

 𝐼 = 𝑈𝑎 and ℎ = 𝑉𝑎 (2) 
 

Thus, the visualization of the HOG features (Fig. 2d) can be 

obtained by projecting the HOG features ℎ onto the HOG 

basis 𝑉 and then projecting 𝑎 into the natural image basis 𝑈: 
 

 𝐻 = 𝑈𝑎∗ (3) 

 where 𝑎∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼∈ℝ𝐿

‖𝑉𝑎 − ℎ‖2
2 (4) 

 

Then, in order to make clearer the differences between the 

layers of trees, we applied a histogram equalization rejecting 

the regions of lower intensity and creating a binary mask of 

trees that will be used in the subsequent detection process 

(Fig. 2e).  

For the localization of trees, we used the above extracted 

mask and we applied a distance transform estimating the 

distance image D and the regional maxima. Subsequently, we 

applied a regional H-maxima transform [21] in order to 

suppress all local maxima in a neighbourhood with radius 

equal to the value 𝑣. The result of this step allows us to 

identify a list of 𝑘 trees (Fig. 2f, red asteroids) driven by the 

morphology of the extracted trees’ mask. 

Then, as each tree canopy and specifically fir canopies 

can be spatially modelled as circles, the pixel coordinates of 

each tree in the mask can be modelled using a Gaussian 

distribution and the number of each tree can be dynamically 

estimated. More specifically, an iterative Gaussian mixture 

model [1] was applied with the number of detected trees to 

being equal to the predicted number of clusters. The method 

attempts to compute the overlapping of neighbouring clusters 

and uses an overlap threshold to purge all redundant clusters. 

Specifically, we initialize the algorithm using the list of 𝑘 

trees and we compute the responsibility of each Gaussian 

component for itself relative to the set of remaining clusters: 
 

𝜌𝑖,𝛫 =
𝛾𝑖𝑖

𝛾𝑖𝑖 + ∑ 𝛾𝑖𝑗𝑗∈𝐾

 (5) 

 

where 𝛾𝑖𝑗 = 𝛾𝑗(𝑝𝑖) ∈ [0, 1] is the generalized responsibility 

of component 𝑗 for component 𝑖: 
 

𝛾𝑗(𝑥) =
𝜋𝑗𝑁(𝑝|𝜇𝑗, 𝛴𝑗)

𝛴𝑗∈𝐶𝜋𝑗𝑁(𝑝|𝜇𝑗 , 𝛴𝑗)
 (6) 

 

Then, clusters expand towards empty space. Furthermore, to 

ensure that the overlapping trees have been correctly detected 

we propose a validation criterion. As the canopies of fir trees 

are generally circular, we estimate whether a detected cluster 

is redundant or not, estimating if the cluster areas are covered 

almost exclusively by the tree data of the previous step 

estimated mask. If not, the overlap threshold is reduced 

estimating new parameters and clusters (Fig. 2f, blue 

asteroids). 
 

2.2. Multi-Pyramid Features Extraction 

 

As can be noted tree canopies contain spatial characteristics 

that reflect the canopy structure and can be used as an 

indicator for the health condition of trees. Inspired by the 

dynamic texture analysis techniques that have been widely 

used for time and spatially evolving signals [12], [10] and 

textures classification in forestry applications [2], [4] we 

consider each tree canopy as a spatially evolving 

multidimensional signal. Here, due to the variant heights and 

orientations of trees and different flight altitudes of UAVs we 

propose a new modeling method through the construction of 

a multi-pyramid i.e., twenty-seven representations in 

different scale and orientation (Fig. 3), and the use of higher 

order linear dynamical systems. Thus, we consider each 

individual multi-pyramid tree representation as a 

multidimensional signal evolving in the spatial domain and 

model it through the following dynamical systems. 
 

 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑣(𝑡) (7) 

 𝑦(𝑡) = �̅� + 𝐶𝑥(𝑡) + 𝑤(𝑡) (8) 
 

where 𝐴 ∈ ℛ𝑛×𝑛 is the transition matrix of the hidden state 

and 𝐶 ∈ ℛ𝑑×𝑛 is the mapping matrix of the hidden state to 

the output of the system. The quantities 𝑤(𝑡) and 𝐵𝑣(𝑡) are 

the measurement and process noise respectively, while �̅� is 

the mean value of observations. The LDS descriptor, 𝑀 =
(𝐴, 𝐶), contains both the appearance information of the 

observation data modeled by 𝐶, and its dynamics that are 

represented by 𝐴. 

The multidimensional spatial signal can be represented 

by tensor 𝑌 ∈ 𝑅𝑛𝑥𝑛𝑥𝑚 , where n is the size of the examined 

tree and m is equal to the number of rgb image channels. For 

the estimation of the system parameters, we apply a higher 

order singular value decomposition [15] to decompose the 

tensor: 

 𝒀 = 𝑆 ×1 𝑈(1) ×2 𝑈(2) ×3 𝑈(3) (9) 
 

where, 𝑆 ∈ 𝑅𝑛×𝑛×𝑚 is the core tensor, while 𝑈(1) ∈ 𝑅𝑛×𝑛, 

𝑈(2) ∈ 𝑅𝑛×𝑛 and 𝑈(3) ∈ 𝑅𝑚×𝑚 are orthogonal matrices 

containing the orthonormal vectors spanning the column 

space of the matrix and ×j denotes the j-mode product 

between a tensor and a matrix. Given the fact that the choice 

of matrices 𝐴 and 𝐶 is not unique, we consider 𝐶 = 𝑈(3) and 

𝑿 = 𝑆 ×1 𝑈(1) ×2 𝑈(2). Hence, equation (9) can be 

reformulated as 𝒀 = 𝑋 ×3 𝐶 ⇔ 𝑌(3) = 𝐶𝑋(3) where Y(3) and 

X(3) indicate the unfolding along the third dimension of 

tensors 𝒀 and 𝑿 respectively. Thus, the transition matrix 𝐴, 

can be easily computed by using least squares as: 
 

 𝐴 = 𝑋2𝑋1
𝑇(𝑋1𝑋1

𝑇)−1 (10) 

where 𝑋1 = [𝑥(2), 𝑥(3), … , 𝑥(𝑛)] and 𝑋2 =
[𝑥(1), 𝑥(2), … , 𝑥(𝑛 − 1)]. After the estimation of the 
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systems parameters, each multi-pyramid tree representation 

can be described by the 𝑀 = (𝐴, 𝐶). 
 

 

 

 
Figure 3. Texture analysis through multi-pyramid (multi-

scale and multi-orientation) analysis. 
 

2.3. Trees’ health identification 
 

For the representation of each tree through the extracted 

descriptors, we adopted the Martin distance as a similarity 

metric. Specifically, we estimate the subspace angles [9] 

between two descriptors and solve the Lyapunov equation 

𝐴⊺𝑃𝐴 − 𝑃 = −𝐶⊺𝐶, where: 
 

𝑃 = [
𝑃11 𝑃12

𝑃21 𝑃22
], 𝐴 = [

𝐴1 0
0 𝐴2

], 𝐶 = [𝐶1 𝐶2] (11) 

 

The cosine of the subspace angles is calculated by the 

following formula: 
 

 𝑐𝑜𝑠2𝜃𝑖 = 𝑖𝑡ℎ𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑃11
−1𝑃12𝑃22

−1𝑃21) (12) 
 

Then, the Martin distance between 𝑀1 and 𝑀2 is defined as: 
 

𝑀𝑎𝑟𝑡𝑖𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑀1, 𝑀2) = −𝑙𝑛 ∏ 𝑐𝑜𝑠2𝜃𝑖

𝑖

 (13) 

Then, through the definition of 𝐾 representative codewords, 

we create a Term Frequency (TF) histogram representation 

for each tree that corresponds to its extracted representations. 

Thus, each TF histogram corresponds to an examined tree [2]. 

Furthermore, for the classification of each tree, we calculate 

the distances of test tree TF histograms with the histogram 

representations of the training dataset. By ranking the 

similarities across all training trees, the majority rule of the 𝑐 

labels with the minimum distances is adopted in order to 

classify the examined tree. 
 

3. EXPERIMENTAL RESULTS 
 

To evaluate the efficiency of the proposed methodology, we 

created a dataset, consisting of 50 forest images and 

containing in total 1548 trees (Fig. 4). The research was 

conducted at a part of AUTH university forest in central 

Greece which mainly is consisted by fir trees. In this area, the 

annual average rainfall is 885 mm and the average annual 

temperature is 9.6 °C. This climate is considered to be Csb 

according to the Köppen-Geiger climate classification. In this 

research, the study area covers approximately 200 ha of fir 

trees. For the validation of the proposed methodology results, 

we manually labelled the trees in the images. From the 

annotation we excluded shrubs and trees that are at the edges 

of the images and the biggest part of them is not shown in 

them. The goal of this experimental evaluation is two-fold: a) 

Initially, we aim to show that the proposed methodology 

improves the identification of individual trees using UAV 

images and b) we want to demonstrate the superiority of the 

proposed multi-pyramid texture analysis approach against 

other state of the art approaches.  
 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Tree images of the dataset with: a) normal/regular 

appearance, b) total or partial defoliation and c) discoloration. 
 

With respect to number of annotated trees, an overall 

detection rate of 92.1% was obtained, while the identification 

rate of individual trees using the wide-used watershed 

algorithm [13] is 84.2%. In Table I, we present experimental 

results for the proposed method against a number of well-

established wood and forest-level state-of-the-art approaches 

for texture analysis. More specifically, as the most health 

monitoring developed methods use spectral indices, we 

compared the identification rates of trees health condition of 

the proposed method against four approaches that widely 

have been used to overcome environmental challenges. Table 

I, show that the proposed method outperforms all other 

methods achieving improvements up to 3.6%. As was 

expected all approaches improve the classification rate of 

GLCM, that is 82.96%. Furthermore, the classification rate 

using RGB-LCM is 84.1%, the rate using CNN is 88.1% 

while the rate applying i-BGLAM is 90.2%.  
 

Table I. Comparison results of trees health condition 

identification rates  

Method Detection 

Proposed 93.8% 

i-BGLAM [27] 90.2% 

CNN [7] 88.1% 

RGB-LCM [3] 84.1% 

GLCM [7] 82.9% 
 

4. DISCUSION AND CONCLUSION 
 

The wide variety of different sensors in combination with the 

modern signal processing and communication systems 

enables the near real-time environmental data acquisition, 

assessment, processing and analysis for the ultimate goals of 

ecosystem protection and monitoring. The proposed method 

will allow experts and scientists to achieve a better-

coordinated global approach that will contribution in 

limitation of forest degradation and negative impacts of 

climate change on air, water, food, soil erosion, floods and 

timber supplies. In the future, more data from a variety of tree 

species will be collected in order to assess the effectiveness 

of the proposed methodology. 
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