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ABSTRACT

Recent studies have shown that Convolutional Neural Networks
(CNN) are relatively easy to attack through the generation of so
called adversarial examples. Such vulnerability also affects CNN-
based image forensic tools. Research in deep learning has shown
that adversarial examples exhibit a certain degree of transferability,
i.e., they maintain part of their effectiveness even against CNN mod-
els other than the one targeted by the attack. This is a very strong
property undermining the usability of CNN’s in security-oriented
applications. In this paper, we investigate if attack transferability
also holds in image forensics applications. With specific reference to
the case of manipulation detection, we analyse the results of several
experiments considering different sources of mismatch between the
CNN used to build the adversarial examples and the one adopted by
the forensic analyst. The analysis ranges from cases in which the
mismatch involves only the training dataset, to cases in which the
attacker and the forensic analyst adopt different architectures. The
results of our experiments show that, in the majority of the cases,
the attacks are not transferable, thus easing the design of proper
countermeasures at least when the attacker does not have a perfect
knowledge of the target detector.

Index Terms— Adversarial multimedia forensics, adversarial
machine learning, adversarial examples, attack transferability, image
forensics.

1. INTRODUCTION

Convolutional Neural Networks (CNN) are increasingly used in im-
age forensic applications due to their superior accuracy in detecting
a wide number of image manipulations, including multiple JPEG
compression [1, 2], median filtering [3], resizing [4], contrast ma-
nipulation [5]. Good performance of CNNs have also been reported
for image source attribution, i.e., to identify the model of the camera
which acquired a certain image [6–8]. Despite the good performance
they achieve, the use of CNNs in security-oriented applications, like
image forensics, is hindered by the easiness with which adversarial
examples can be built [9–11]. As a matter of fact, an attacker who
has access to the internal details of the CNN used for a certain image
recognition task can easily build an attacked image which is visually
indistiguishable from the original one, but is misclassified by the
CNN. Such a problem is currently the subject of an intense research
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activity, yet no satisfactory solution has been found yet (see [12] for
a recent survey on this topic). The problem is worsened by the obser-
vation that adversarial attacks are often transferrable from the target
network to other networks designed for the same task [13]. This
means that even in a Limited Knowledge (LK) scenario, wherein the
attacker has only partial information about the to-be-attacked net-
work, he can attack a surrogate network mimicking the target one
and the attack will be effective also on the target network with good
probability. Such a property opens the way towards very powerful
attacks that can be used in real applications wherein the attacker does
not have full access to the attacked system [13].

Following some recent researches, showing that CNN-based im-
age forensics tools are also endangered by the existence of adversar-
ial examples [14–16], the goal of this paper is to investigate if and to
which extent the transferability of adversarial examples holds in im-
age forensics applications. The answer to this question is of primary
importance, since attack transferability would greatly complicate the
development of anti-counter-forensics measures. In fact, even deny-
ing to the attacker a full access to the forensic tools would not guar-
antee that the forger can not mislead the forensic analysis. To the
best of our knowledge, the only previous works partially address-
ing this problem are [15] and [17]. In particular, [15] reports some
tests aiming at assessing the transferability of adversarial examples
targeting various CNN-based camera model identification systems.
According to [15], in a camera model identification scenario, attacks
are only partially transferable, since the transferred attack succeed
in no more than 40% of the cases (often much less). In [17], the
transferability between different network models is assessed by con-
sidering a case of attack carried out by the FGSM [18]. The anal-
yses in [15] and [17] are very preliminary, hence calling for new
tests addressing different sources of mismatch between the attacked
network and the targeted one, different forensics scenarios, and the
impact that the attack strength has on the transferability of the at-
tacks. In this paper, we make some steps in this direction. We con-
sider two forensic tasks boiling down to a binary detection problem,
namely, median filtering and image resizing detection. We analyse
separately the effect of training data mismatch and network archi-
tecture mismatch on the transferability of the attacks, by consider-
ing two different attack methodologies, namely the Jacobian-based
Saliency Map Attack (JSMA) [11] and the Iterative Fast Gradient
Sign Method (I-FGSM) [19] (i.e. the refined iterative version of the
original FGSM attack [18]), and evaluate the transferability of the
attacks also in the presence of double-to-integer rounding, which is
a necessary step to bring back the attacked image into the integer
domain. As we will see, our experiments cast serious doubts on the
transferability of adversarial attacks in image forensic applications,
thus opening the way to the development of proper countermeasures.

The rest of this paper is organised as follows. In Sect. 2, we
describe the methodology used for our experiments, including: i)
the description of the algorithms used to generate the adversarial

8286978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



examples; ii) the description of the CNN architectures targeted by
the attacks; iii) the description of the experimental campaign, iv) the
datasets used for training and testing the CNNs. The results of the
experiments are presented in Sect. 3, together with a discussion of
our main findings. Finally, in Sect. 4, we present a roadmap for
future research.

2. METHODOLOGY

In order to evaluate the factors that influence the transferability of
adversarial attacks against CNN-based detection of image process-
ing operators, we considered two different kinds of attacks, two de-
tection tasks solved by relying on two different networks, and three
sources of mismatch between the network used to create the adver-
sarial attack (hereafter referred to as Source Network - SN) and the
one the attack should be transferred to (hereafter referred to as Tar-
get Network - TN). In particular we considered the cases of two dif-
ferent networks trained on the same dataset and the case of a single
network trained on different datasets. With reference to the terminol-
ogy established in [13], we refer to the first type of transferability as
cross-model transferability and to the second as cross-training trans-
ferability. We also considered the case of two different networks
trained on different datasets (cross-model-and-training transferabil-
ity). The combination of the above factors resulted in an extensive
campaign of experiments whose results will be discussed in Sect. 3.

2.1. Attacks

In our experiments, the adversarial examples were built by relying
on the FGSM algorithm, originally proposed in [18], and the JSMA
[11]. The Foolbox toolbox [20] was used to implement them.

For the FGSM, as we said, we considered the refined iterative
version (I-FGSM) described in [19]. In its original implementation,
FGSM obtains an adversarial perturbation in a computationally effi-
cient way by computing the gradient of the output with respect to the
input image and considering its sign multiplied by a strength factor.
The I-FGSM algorithm is a multi-step variant of FGSM; for a given
attack strength ε, the algorithm is applied iteratively until an adver-
sarial image can be produced (that is, an image which is misclassi-
fied by the network), for a maximum number of steps S. Several
values of ε are considered, i.e. ε ∈ E; the value which minimizes
the distortion of the final attacked image with respect to the origi-
nal one is eventually selected as best strength, for the given maxi-
mum number of iterations of the algorithm S. In the foolbox im-
plementation of I-FGSM, ε corresponds to the normalized strength
factor. Then, at each iteration i+1, the image is updated as follows:
Xi+1 = Xi+ε(max(Xi)−min(Xi)) ·sign(∇XJθ(Xi, y)), where
Jθ(X, y) is the cross-entropy cost function with parameters θ, and y
is the ground truth label of X .

The JSMA algorithm, proposed by Papernot et al. [11], consists
of a greedy iterative procedure which relies on forward propagation
to compute, at each iteration, a saliency map, indicating the pixels
that contribute most to the classification. The pixels are then modi-
fied based on this map by a relative amount θ, θ < 1 (θ is relative
to the range of the values of the image, the pixel modification being
θ·(max(Xi)−min(Xi))). A constrain is put on the maximum num-
ber of times T the same pixel can be modified. We do not limit the
maximum number of iterations. Then, the procedure ends when the
attacker succeeds or the pixels are modified by a too large amount
(i.e., the number of modifications reaches the maximum prescribed
number for all pixels) [11].

Both the I-FGSM and the JSMA algorithms produce a real-
valued attacked image. While in some cases we can assume that
the attacked image is used as is, in most applications image pixels
must be mapped back into the integer domain before being fed to
the CNN. This may result in a loss of effectiveness of the attack,
since some of the subtle changes introduced by the attack are deleted
when pixels are rounded (or truncated) to integer values.

2.2. Datasets

In order to evaluate the transferability of the attacks when the SN and
the TN are trained on different datasets, we considered the RAISE
(R) [21] dataset and the VISION (V) dataset [22].

For our experiments, about 2000 uncompressed, camera-native,
images (.tiff) were taken from the RAISE dataset, with size 4288×
2848. These images are camera-native images coming from three
different cameras. The same number of images were taken from the
VISION dataset. This dataset consists of native images acquired by
smartphones/tablets belonging to several brands. To get similar res-
olution images for the two datasets, we only selected the devices for
which the resolution was not very different from that of the images
from RAISE. Specifically, the sizes of the images we considered
ranges from a minimum of 2336×4160 up to 3480×4640. The im-
ages from the VISION dataset are in JPEG format. In order to reduce
the possible impact of compression artefact, we selected images only
from the high-quality devices, for which the JPEG Quality Factor is
larger than 97. The images from both R and V datasets were split
into training (and validation) set and test set, and then processed to
produce the images for the manipulated class, namely, median and
resizing. For all our tests we considered one-channel images, then
all the images from R and V were converted to gray-scale.

2.3. Networks

In our experiments, we considered two different detection tasks,
namely the detection of image resizing (downsampling, by a 0.8
factor) and median filtering (by a 5 × 5 window). To cope with
them, we built several networks generally indicated as N tr

ar(task),
where ”ar” indicates the architecture of the network, ”tr” ∈ {R, V}
the dataset used for training and ”task” ∈ {med, res} the detection
task (”med” indicating median filtering and ”res” resizing).

With regard to the architectures, we considered the network in
[23] (recently extended in [4]), hereafter referred to as BSnet (”ar” =
BS), and the one in [5], hereafter denoted as GCnet (”ar” = GC).
BSnet, originally proposed for image manipulation detection and
classification, consists of 3 convolutional layers, 3 max-pooling lay-
ers and 3 fully-connected layers. Residual-based features are ex-
tracted by constraining the filters of the first layer (with 5× 5 recep-
tive field), by enforcing a high-pass nature of the filters (see [4] for
more details). For the second and third convolutional layers the filter
size is set to 7 × 7 and 5 × 5 respectively, and the stride is set to 2.
For the max-pooling, a kernel size 3×3 is used with stride 2. GCnet
was originally proposed to detect generic contrast adjustment opera-
tors. With respect to BSnet, GCnet is significantly deeper, consisting
of 9 convolutional layers. The network has only 2 max-pooling lay-
ers and one fully-connected layer. A kernel size of 3 × 3 and stride
1 was used for all the convolutional layers. Max-pooling is applied
with kernel size 2×2 and stride 2. The number of parameters is then
reduced by halving the number of feature maps in the final convolu-
tional layer, and considering just one fully-connected layer.

Then, we built 6 networks, indexed as: N tr
BS(task), ”tr” ∈ {R,

V}, ”task” ∈ {med, res}, and NR
GC(task), ”task” ∈ {med, res}.
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2.4. Experiments

The experimental campaign was designed in such a way to highlight
attack transferability in a wide variety of settings. Experiments have
been split into three categories according to the type of mismatch be-
tween the SN and the TN. We started studying cross-training trans-
ferability, according to which SN and TN share the same architec-
ture, but are trained on different datasets. Then we passed to analyse
cross-model transferability, in which different network architectures
are trained on the same dataset. Eventually, we passed to cross-
model-and-training transferability according to which the SN and the
TN share neither the architecture nor the training data. All the tests
have been repeated for both resizing and median filtering detection.
For sake of simplicity we did not consider all possible combinations,
however, the amount of experiments we carried out is sufficient to
draw a number of significant conclusions. In particular, the experi-
ments for the cross-training transferability are carried out by consid-
ering only BSnet as the SN, trained on R, i.e., SN = NR

BS (in this
case TN = NV

BS), and on V , i.e., SN = NV
BS (TN = NR

BS). For
the experiments on the cross-model transferability, BSnet is taken
as SN and GCnet as TN, both trained on R, i.e., SN = NR

BS and
TN = NR

GC. Finally, for the cross-model-and-training case, we set
SN = NV

BS and TN = NR
GC.

With regard to the attacks, for the I-FGSM attack, the number
of steps S is fixed to 10 (default). The best strength is searched in
the range E = [0 : εs : 0.1], where εs is the search step size,
which then also corresponds to the minimum normalized strength
considered. Setting a larger εs generally corresponds to consider a
stronger attack. In our experiments, we considered εs = 0.001 and
0.01, for which the average PSNR remains above 40 dB. For the
JSMA, T is set to 7. The relative modification per pixel θ is set to
0.01 and 0.1, the second case corresponding to a stronger attack. We
did not consider θ values larger than 0.1, since above this value the
maximum pixel distortion introduced by the attack starts becoming
too large (> 70). Eventually, we repeated all the experiments by
rounding the output of the attack to integer values.

3. RESULTS AND DISCUSSION

In this section we discuss the results of the experiments we have
carried out. For sake of brevity, we will focus on the floating point
version of the attacks, being this case more favorable to the attacker,
and we will briefly touch upon the integer-valued case at the end.

To build our models NR
BS and NV

BS (for both detection tasks), we
considered 200.000 patches for training (and validation) and 10000
for testing, per class. In order to use all the images in the datasets
R and V , a maximum number of 100 patches is selected (randomly)
for each image. A number of 30 training epochs was considered
(as in [23]). For the deeper models NR

GC for both the ”med” and
”res” task, we used 106 patches for training, 105 for validation, and
5 ∗ 104 for testing. To reach these numbers, all the image patches
were selected from all the images. By following [5], the number
of training epochs is set to 3. The input patch size is set to 128 ×
128. For training both BSnet and GCnet, the Adam solver is used
with learning rate 10−4 and momentum 0.99. The batch size for
training is set to 32 images, the test batch size to 100. The accuracies
achieved by the BSnet in absence of attacks in the various cases are:
98.1% for NR

BS(med), 99.5% for NV
BS(med), 97.5% for NR

BS(res),
96.6% for NV

BS(res). With regard to GCnet, it got the following
accuracies: 98.4% for NR

GC(med) and 98.5% for NR
GC(res).

In the next section, we discuss the performance of the models
in the presence of attacks, in the matched and mismatched cases.
In counter-forensic applications, it is reasonable to assume that the

attack is only in one direction, since the attacker wants to pass off
a manipulated image as an original one, i.e. aims at causing a false
negative error. Therefore, in our experiments, we only attack images
from the manipulated class. In all the cases, the performance of the
attack are assessed on 500 patches, obtained by attacking a subset of
the patches from the corresponding test set in each case. Obviously,
we attack only images for which the classification of the network is
correct. An attack is declared successful when it is able to switch
the network decision, i.e., when the manipulated image is labeled as
original after the attack (the output soft score for the original class
becomes larger than 0.5).

3.1. Cross-training transferability

As detailed in Sect. 2.4, these experiments were carried out by con-
sidering only the BS architecture. The results we got are reported
in Table 1. For each case, the table reports the accuracy on the
manipulated class for both SN and TN without attacks. For each
attack type, the PSNR, L1 distortion and maximum absolute distor-
tion are reported, averaged on all the images successfully attacked in
the matched case (i.e., successfully fooling SN). The attack success
rate with respect to SN and TN is reported in the last two columns.
As we can see, the attacks are generally non-transferable and the im-
ages attacked using SN are not able to deceive the TN. More specif-
ically, with the FGSM attack, the adversarial examples can be trans-
ferred in a significant number of cases only when the larger strength
is considered (εs = 0.01) and the SN corresponds to NR

BS(res) and
NR

BS(med) (attack success rate 0.692 and 0.845 respectively) and to
NV

BS(res) (attack success rate 0.941). For the JSMA case, the attack
can be transferred only when SN is NR

BS(res) and strong attack with
θ = 0.1 is considered, with success rate 0.782. Furthermore, we ob-
serve that the JSMA is never transferable when the VISION dataset
is used to train the SN. It is also interesting to observe that, for a
given detection task, the transferability is not symmetric with respect
to the datasets used for training. This suggests that, in forensic ap-
plications, the features learned by the network may also be affected
in some way and up to some extent by the underlying dataset. This
point deserves further investigation as a future work.

3.2. Cross-model transferability

In this case, the experiments were carried out by considering only
the R dataset and using the BS architecture for the SN. The results
we have got are reported in Table 2. The experiments show the lack
of transferability with respect to a mismatch in the network model.
The only exception is for the ”med” case, in which case the stronger
attack (with εs = 0.01) is transferable 82.5% of the times. How-
ever, it is worth stressing that, when the FGSM is applied with such
a strength, although the PSNR is not very low (40.03 dB), the av-
erage L1 distortion is around 2.5 (a similar value is attained by the
maximum absolute distortion). With such values of L1, the visual
quality of the FGSM attacked images is impaired and peculiar visual
artifacts appears, especially in relatively uniform image patches.

The fact that the lack of transferability is even stronger in the
”res” case than in the ”med” case can be probably justified by the
ease of the median filtering detection task (even because the median
filtering is performed with a rather large window size), compared to
the resize. Therefore, we might expect that in the case of ”med” sim-
ilar peculiar features are learned by the shallow and deeper network,
hence facilitating the transferability of the attacks.

3.3. Cross-model-and-training transferability

In this case, the experiments were carried out by considering the
BS architecture trained on the V dataset as the SN, and the GC ar-
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Table 1. Experimental results for Cross Training. Transferable attacks are highlighted in bold.
SN TN Accuracy Attack type PSNR L1 dist max. dist Attk succ rate (SN) Attk succ rate (TN)

NR
BS(res) NV

BS(res) SN= 97.60%, TN= 96.00% I-FGSM, εs = 0.01 40.02 2.53 2.55 1.000 0.692
NR

BS(res) NV
BS(res) SN=97.60%, TN= 96.00% I-FGSM, εs = 0.001 58.46 0.26 0.27 1.000 0.0491

NR
BS(res) NV

BS(res) SN= 97.60%, TN= 96.00% JSMA, θ = 0.1 46.04 0.07 58.32 1.000 0.782
NR

BS(res) NV
BS(res) SN= 97.60%, TN= 96.00% JSMA, θ = 0.01 54.99 0.04 15.09 0.991 0.115

NV
BS(res) NR

BS(res) SN= 97.80%, TN= 99.60% I-FGSM, εs = 0.01 40.03 2.53 2.55 1.000 0.002
NV

BS(res) NR
BS(res) SN= 97.80%, TN= 99.60% I-FGSM, εs = 0.001 59.64 0.26 0.27 1.000 0.000

NV
BS(res) NR

BS(res) SN= 97.80%, TN= 99.60% JSMA, θ = 0.1 50.55 0.01 69.42 0.989 0.000
NV

BS(res) NR
BS(res) SN= 97.80%, TN= 99.60% JSMA, θ = 0.01 57.78 0.01 17.06 0.979 0.000

NR
BS(med) NV

BS(med) SN= 98.20%, TN= 100% I-FGSM, εs = 0.01 40.03 2.53 2.55 1.000 0.845
NR

BS(med) NV
BS(med) SN= 98.20%, TN= 100% I-FGSM, εs = 0.001 59.67 0.26 0.27 1.000 0.045

NR
BS(med) NV

BS(med) SN= 98.20%, TN= 100% JSMA, θ = 0.1 49.64 0.03 38.11 1.000 0.012
NR

BS(med) NV
BS(med) SN= 98.20%, TN= 100% JSMA, θ = 0.01 58.47 0.02 14.05 0.984 0.002

NV
BS(med) NR

BS(med) SN= 100%, TN= 99.20% I-FGSM, εs = 0.01 40.04 2.53 2.55 1.000 0.941
NV

BS(med) NR
BS(med) SN= 100%, TN= 99.20% I-FGSM, εs = 0.001 59.94 0.25 0.25 1.000 0.077

NV
BS(med) NR

BS(med) SN= 100%, TN= 99.20% JSMA, θ = 0.1 49.55 0.03 32.09 1.000 0.010
NV

BS(med) NR
BS(med) SN= 100%, TN= 99.20% JSMA, θ = 0.01 58.13 0.01 14.08 0.988 0.008

Table 2. Experimental results for Cross Model. Transferable attacks are highlighted in bold.
SN TN Accuracy Attack type PSNR L1 dist max. dist Attk succ rate (SN) Attk succ rate (TN)

NR
BS(res) NR

GC(res) SN= 97.60%, TN= 98.20% I-FGSM, εs = 0.01 40.02 2.53 2.55 1.000 0.002
NR

BS(res) NR
GC(res) SN= 97.60%, TN= 98.20% I-FGSM, εs = 0.001 58.48 0.31 0.33 1.000 0.002

NR
BS(res) NR

GC(res) SN= 97.60%, TN= 98.20% JSMA, θ = 0.1 46.09 0.07 57.88 1.000 0.016
NR

BS(res) NR
GC(res) SN= 97.60%, TN= 98.20% JSMA, θ = 0.01 54.98 0.04 15.14 0.992 0.006

NR
BS(med) NR

GC(med) SN= 98.20%, TN= 100% I-FGSM, εs = 0.01 40.03 2.53 2.55 1.000 0.825
NR

BS(med) NR
GC(med) SN= 98.20%, TN= 100% I-FGSM, εs = 0.001 59.67 0.26 0.27 1.000 0.181

NR
BS(med) NR

GC(med) SN= 98.20%, TN= 100% JSMA, θ = 0.1 49.64 0.03 38.11 1.000 0.010
NR

BS(med) NR
GC(med) SN= 98.20%, TN= 100% JSMA, θ = 0.01 58.47 0.02 14.05 0.984 0.016

Table 3. Experimental results for Cross Training and Model. Transferable attacks are highlighted in bold.
SN TN Accuracy Attack type PSNR L1 dist max. dist Attk succ rate (SN) Attk succ rate (TN)

NV
BS(res) NR

GC(res) SN= 99.20%, TN= 99.60% I-FGSM, εs = 0.01 40.03 2.53 2.55 1.000 0.004
NV

BS(res) NR
GC(res) SN= 99.20%, TN= 99.60% I-FGSM, εs = 0.001 59.57 0.27 0.27 1.000 0.002

NV
BS(res) NR

GC(res) SN= 99.20%, TN= 99.60% JSMA, θ = 0.1 50.20 0.02 70.87 1.000 0.000
NV

BS(res) NR
GC(res) SN= 99.20%, TN= 99.60% JSMA, θ = 0.01 57.40 0.01 17.16 0.992 0.000

NV
BS(med) NR

GC(med) SN= 100%, TN= 100% I-FGSM, εs = 0.01 40.04 2.53 2.55 1.000 0.796
NV

BS(med) NR
GC(med) SN= 100%, TN= 100% I-FGSM, εs = 0.001 59.91 0.25 0.26 1.000 0.008

NV
BS(med) NR

GC(med) SN= 100%, TN= 100% JSMA, θ = 0.1 49.56 0.03 31.83 1.000 0.008
NV

BS(med) NR
GC(med) SN= 100%, TN= 100% JSMA, θ = 0.01 58.06 0.01 14.18 0.990 0.012

chitecture trained on the R dataset as the TN. Similar results can
be obtained by combining architecture and dataset in the other way
round. The results we have got are reported in Table 3. Quite ex-
pectedly, the table shows that the transferability of the attacks in this
case decreases further and the attack success rate is below 0.01 in
all the cases but for the case of FGSM with εs = 0.01, for which a
success rate of 0.796 can still be achieved.

As a general behavior, according to our tests, for all the three
types of mismatch considered, attacks obtained by JSMA are less
transferable than those produced by FGSM. A possible motivation
can be the following: since very few pixels are modified by JSMA,
it tends to overfit more the attacked model. Related to this, with
JSMA, the average output scores returned by SN on the successfully
attacked samples are very close to 0.5 (in the range [0.5, 0.6]), while
with FGSM they are always much larger than 0.5 (often > 0.9).
Lastly, we repeated all the experiments by rounding the pixel values
of the attacked images to integers. According to the results we have
got, integer rounding does not have a big impact on the transferabil-
ity of the attacks. Rather it influences the effectiveness of the attack
on the SN itself, as already reported in several studies, e.g. [15, 24].

4. CONCLUDING REMARKS
We investigated the transferability of adversarial examples in an im-
age forensics scenario. By focusing on two manipulation detection
tasks, we run tests by considering two well known attack method-
ologies and several sources of mismatch. Our tests show that adver-
sarial examples are generally non-transferable, in contrast to what
happens in typical pattern recognition applications. This states an
important result, since the lack of transferability can be exploited by
the forensic analyst to make the attack more difficult. For instance,
a LK scenario can be enforced in some way to combat adversarial
examples, as done with the approaches based on standard ML. Even
if our results clearly show that adversarial examples can not be eas-
ily transferred from one network to another, further tests are needed
before we can draw some final conclusions. First of all, more de-
tection tasks should be considered, together with different sources
of mismatch between the SN and the TN. As an example, we may
wonder if a mismatch in the training procedure is enough to pre-
vent transferability. Also, the reason why image-forensic networks
are less prone to attack transfers should be understood. On the at-
tacker’s hand, further research is needed to understand if and how
the transferability can be improved by increasing the attack strength
to enter more inside the region.
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