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ABSTRACT

Violence detection in videos aims to identify whether a violent ac-
tion occurred within a video stream. Effective tools for intelligent
video analysis are highly demanded, specially to determine violence
in video streams. Such solution could have applications in detect-
ing inappropriate behaviors in video feeds, aiding law-enforcement
in forensic cases, protecting children from accessing inappropriate
online content and helping parents making informed decisions about
what their kids should watch. Prior art on violence detection, partic-
ularly recently proposed deep learning based ones, seeks to identify
violence in videos as a whole, without considering breaking down
the subject into some of its underlying concepts. In this paper, we
explore a different methodology of violence detection, which relies
upon two deep neural network (DNNs) frameworks to learn spatial-
temporal information on video clips under different scenarios —
subjective- and conceptual-based. We leverage deep feature repre-
sentations for each specific concept, and aggregate them by training
a shallow neural network as a binary-classification problem to de-
scribe violence as a whole. Finally, we show that using more specific
concepts is an intuitive and effective solution, besides being comple-
mentary to form a more robust definition of violence.

Index Terms— computer vision, violence classification, deep-
learning, semantic concept detection, forensic computing

1. INTRODUCTION

Semantic violence detection is an important capability for the issue
of video analysis in filtering sensitive media contents. It can also
provide a useful tool to protect users from receiving undesired media
from any kind of sources and, in conjunction with intelligence video
surveillance systems, to detect inappropriate behaviors and aid law-
enforcement in forensic examination cases. Moreover, it can prevent
content from being uploaded to social media, forums or educational
platforms; or on the other hand, prevent it from being shown in spe-
cific places such as schools and workplaces.

Undeniably, hundreds of hours of video are uploaded every
minute through the Internet, while handling and analyzing them are,
accordingly, heavily time consuming. Violence is considered as
one of the sensitive media that is very subjective to define and, as
such, leads to different interpretations. Early exposure of violence
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on scenes of media content might be not suited for everyone, de-
cisively, for underage persons. Typically, “automatic” solutions in
prior art rely on extracting discriminant spatial-temporal features in
videos in an attempt to identify violence, which turns this task into
one very active research area. Proof of interest is also apparent on
the competition “MediaEval Affect Task”, which aims to identify
violence in movies [1].

In the task of violence detection, some works consider only a
specific subject at a time, such as fights [2, 3], while in [4], a com-
bination of both explosions and blood were considered. Most recent
solutions involved the use of deep-learning techniques to extract fea-
tures and combine them with spatial-temporal descriptors [5, 6, 7, 8,
9]. In this work, following the benchmark work in the MediaEval
2013 VSD dataset [10], the adopted definition of violence was that
a scene is violent if “one would not let an eight-year old child see”
[10].

Here, we aim to address the violence detection task by breaking
down the subjective concept of violence into more specific concepts
such as: Blood, Cold Arms, Explosions, Fights, Fire, Firearms, Gun-
shots. The idea of breaking down violence into different subjects is
not novel. Cheng et al. [11] identified audio signatures with slightly
varied events that could identify different kinds of violence, such as
explosions, gunshots, and car crashes. Inspired by this process, we
utilize two deep-learning techniques to explore the presence of vio-
lence in videos by considering the performance separately on each
of the used networks in terms of subjective violence. We then take
into account violence as a single higher level concept in order to
analyze the performance behavior of both networks. Finally, we per-
form a fusion of the concepts of violence to identify only the subject
of violence, and compare performance on different scenarios.

The contribution of this paper can be summarized as follows.
First, we consider three different scenarios for violence detection in
videos: (i) conceptual-based violence detection to identify a desired
violence concept in videos; (ii) a setup in which only the violence
as a unique concept is used regardless of the first scenario; and (iii)
regarding to the first scenario, we consider the fusion of concepts
as a whole to identify the more high-level concept of violence.
Second, we utilize two deep neural networks (DNNs), which are
robust on learning high level spatial-temporal information from
raw image data. The two networks are the 3D-based convolutional
neural network (commonly called C3D) and the joint of CNN with
long short-term memory (CNN-LSTM). Both networks have been
originally proposed for human action recognition [12]. Finally,
we design a shallow neural network to combine the feature maps
obtained from the above networks to address the third scenario of
this study. This work extends upon our preliminary work [13] in
the methodology on subjective violence classification. In this study,
we aim to address an end-to-end classification approach, by consid-
ering two DL frameworks, separately, under different scenarios as
discussed above.
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The remainder of this paper is organized as follows. We first
summarize recent related work in the area of violence detection in
Sec. 2. In Sec. 3, we discuss the utilized two deep learning tech-
niques in violence classification problem. In Sec. 4, we evaluate
their effectiveness on MediaEval-2013-VSD data set. And finally,
we conclude the paper with directions for future work in Sec.5.

2. BACKGROUND

In this section, we first describe recent violence detection approaches
aimed at analyzing violent segments in videos. We then summa-
rize deep learning techniques proposed for violence classification in
videos.

Violence detection methods. The violence detection problem
had its first works derived from solutions of action recognition. To
deal with this task, some works proposed the Bag of Visual Word
(BoVW) approach [3, 14]. In [3], low-level features are gener-
ated with an image descriptor similar to Space-Time Interest Points
(STIP) [15] and classifies the feature vectors via Support Vector
Machine (SVM). In [14], local spatial-temporal features are used
for classification. Clarin et al. [16] proposed to use local interest-
point based approaches to detect fights as subjective violence. A
novel descriptor was proposed in [17] for real-time crowd violence
detection.

DNN techniques on violence detection. To the best of our
knowledge, only a few published papers have utilized DL frame-
works for the actual violence detection problem. In [5, 6, 7, 8, 9, 18],
DL techniques were utilized as a high-level feature extractor method
aiming to identify the correct class label by using a supervised learn-
ing algorithm (e.g., SVM). Ding et al. [19] relied upon a 3D con-
volutional based network, which interprets violence as fights, and
trained the network on a Hockey games data set. In [20], a three-
stream DNN framework was proposed for detecting violence under
the subject of person-to-person violence setup. They adopted 2D
CNN-based network for each stream, namely acceleration, spatial,
and temporal streams, to learn the spatial information, while a Long
Short-Term Memory (LSTM) Neural Network was used on top of
three streams to learn temporal information.

Remarkably, most of the above mentioned works only rely on
evaluating their methodology on a specific concept of violence (e.g.,
fights) without considering the myriad of possible different concepts
for violence. However, such a complex concept could be very chal-
lenging for a DNN to grasp with. Instead, here we aim to separately
leverage two DNN frameworks to learn smaller and more objective
concepts, and finally compare the behavior of both networks with
each other. We additionally design a feature fusion network in order
to learn deep feature obtained by the utilized DNNs.

3. METHODOLOGY

We briefly explain both DNNs we rely upon in this work in order to
learn an end-to-end classification solution for violence under various
subjective concepts. Each network can respectively extract different
types of violence information from raw videos, and eventually iden-
tify the desired class label. Following this section, we first discuss
two DNNs for learning spatial-temporal information from raw im-
ages of video, which are utilized under different setups. We then
explain our feature fusion network, which aims to learn the violence
definition from obtained high-level features of the DNNs.

3.1. 3D Convolutional network

Unlike typical CNN-based frameworks, 3D convolutional networks
are basically trained on frame sequences of video clips. This type of
network is able to learn correlations directly in the 3D space, where
in the convolutional processing of CNN it has the ability of comput-
ing features from both spatial and temporal domains. The network
consists of eight convolution layers, which can be categorized into
five groups; the first two groups are comprised of a single convolu-
tional layer , while the last three groups are followed by two sequen-
tial convolution layers The network is followed by 3 fully-connected
layers and the number of classes (2 in our case).

We followed the configuration of hyperparameters of each layer
as in [21]. We use 3× 3× 3 filters for all convolutional layers. Each
convolutional layer is followed by a rectified linear unit (ReLU) and
a max-pooling layer. Max-pooling filters are of size 2×2×2 except
in the first layer, where it is 2×2×1. The size of convolution output
is kept constant by padding 1 pixel in all 3D domains. Filter stride
for all is set 1 for convolution and 2 for pooling operations. Fully
connected layers are followed by ReLU layers. Softmax layer at the
end of the network outputs class scores.

3.2. CNN-LSTM network

Considering the great success of the CNN-LSTM architecture on
jointly learning spatial-temporal information on hand gesture recog-
nition problem [22], we adopt this network for the task of violence
detection; whereas the network is trained on sequence-level classifi-
cation problem. The CNN-LSTM network consists of the following
distinct layers: at the beginning of the network, two convolutional
layers are followed by max-pooling layers. The max-pooling layer
halves the width and height of feature maps passed through the con-
volutional layers. Then a flatten layer is used to reduce each vector
to one dimension. The output of flatten layers is then fed into an
LSTM layer by decreasing output sizes. Finally, a softmax function
yields the final probability of the network to determine whether or
not the violence concept occurred in the video sequence analyzed.

3.3. Feature-fusion network

Clearly, it is possible to design a network to learn spatial-temporal
information only on the subject of violence rather than going through
each concept separately. However, the number of data samples for
the task of violence detection is relatively large, due to large amount
of video frames. At this part of our study, we present a strategy to
design a network, which can independently learn the final decision
from the output weights obtained from the binary classification net-
works. This solution can be used to reduce both computational and
memory foot print.

We design a joint network, which aims to leverage concepts of
violence and, ultimately, identify the subject of violence. It is noted
that the fusion network is not utilized in an early stage; this mainly
because our fusion network is trained independently on the feature
representations generated by the two DNNs. Therefore, we are in-
terested on the features from a trained model, which gained better
performance as its originally learned for raw image data. For fu-
sion, we designed a shallow network with three hidden layers and a
softmax layer at the top of the network to predict whether violence
is present within the sequence of frames. Fig. 1 shows the whole
pipeline of our fusion network.

After a grid search of number of neurons for each hidden layer,
the best trade-off with respect to the performance of the network
for each hidden layer is selected 512, 128, 32 neurons, respectively
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Fig. 1. Pipeline of the proposed feature fusion network. Also, two
instances from the used data set are presented, in which the raw im-
age videos are only used for both DNNs in early-stage, while the
generated feature representations is used for fusion task.

from first to last hidden layer. The input of the network is the feature
weights obtained from the last fully-connected layer from which the
final features are obtained for the model trained on each concept of
violence. The size of the input network is dependent on the number
of neurons of the desired layer in the main network.

4. EXPERIMENTS

We evaluate the performance of the utilized networks (C3D and
CNN-LSTM) on benchmark MediaEval-2013-VSD data set. We
first explain the setting of the used data set on violence detection.
We then describe the implementation details of our frameworks, as
well as our feature fusion network. Finally, we present and discuss
the achieved performances over different experimental strategy.

Dataset. MediaEval-2013-VSD data set [10] is a benchmark
data set on violent scenes which contains of 25 Hollywood movies
of diverse genres. The data set provides shot segmentation from the
movies, where each segment has been manually annotated in order
to distinguish whether or not physical violent occurred within the
scenes for each movie. The definition of violence used by the com-
petition is that a scene is violent if “one would not let an eight-year
old child see”. The data set released with already separated parti-
tions in training and testing sets. The training set includes 18 movies
while the test set comprised with 7 movies Remarkably, among all
the scenes, only 20% of them have been categorized as violent.
Although the data-set provides annotations for individual concepts
(e.g., blood, fights, etc.), these annotations are only available for the
training set.

Implementation details. We implemented the architecture for
the aforementioned networks using Keras DL library on Python. We
then carried out our experiments by using Tensorflow toolbox as the
DL platform on NVIDIA GeForce GTX 1080 Ti GPU. Each network
was trained for a binary classification of each individual concept.
For the sake of fair comparison, we separated five of the available
training set movies, two for validation during training, and three for
testing, and kept the same division throughout all experiments. We
also scaled all video frames of the data set to the size of 128×128×3
pixels for our networks inputs.

For the C3D model, we followed [21] to train the network by
the stochastic gradient descent (SGD) algorithm, training on video
clips of 32 frames. Due to the large amount of negative samples, we
balanced the training set for each network selecting all the positive
samples relevant to each concept and choosing an equal amount of
clips for the negative class The network ran for 100 epochs, each one
comprising of 1200 steps of training in 10 randomly selected video
clips per batch. To train our CNN-LSTM model, we used the Root
Mean Square Propagation (RMSProp) algorithm to train is a similar
fashion, feeding the network with 10 batches of 32 sequential frames
for 100 epochs, each one running for 1200 steps of training.

In the case of feature fusion network, we carried out the experi-
ments separately for each main network (C3D and CNN-LSTM). For
C3D network, we used the output weights of the last fully-connected
layer, with feature size of 4096, for each input of 32 frames. While
the output of LSTM from CNN-LSTM network is used (with feature
size of 512) as the input of our fusion network for each individual
frame. Therefore, we set the different input size for fusion network
with respect to each experiment. We carry out the experiments on
the same data samples as originally used for training the main net-
works. For each experiment on feature fusion network, we train the
network for 150 epochs.

We notice that the behavior of fusion network was better, in
terms of performance, when the network was trained with same op-
timizer used by the main network. We therefore use SGD, and RM-
Sprop for the features map obtained by C3D, and CNN-LSTM net-
works, respectively. We trained the network with the batch size of
32, and learning rate of 0.0001.

Results. Here we present the results in terms of the performance
of each network. We use metrics to quantify our experiments on
frame-level classification problem. The metrics are averages of true
positive (TP), true negative (TN), and normalized accuracy (Norm.

Fig. 2. Summary of the Normalized Accuracy of testing set evalu-
ated with C3D, CNN-LSTM, and fusion models. The figure is best
viewed in color.
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C3D CNN-LSTM
Validation Testing Validation Testing

TP TN Norm. Acc. TP TN Norm. Acc. TP TN Norm. Acc. TP TN Norm. Acc.
Blood 0.47 0.64 0.56 0.46 0.71 0.59 0.52 0.62 0.57 0.79 0.41 0.60
Coldarms 0.54 0.48 0.51 0.56 0.53 0.55 0.72 0.36 0.54 0.96 0.14 0.55
Explosions 0.71 0.44 0.58 0.62 0.72 0.67 0.87 0.36 0.612 0.81 0.38 0.6
Fights 0.53 0.66 0.60 0.69 0.70 0.70 0.82 0.25 0.54 0.84 0.4 0.62
Fire 0.52 0.68 0.60 0.54 0.65 0.60 0.69 0.42 0.56 0.7 0.4 0.56
Firearms 0.45 0.66 0.56 0.59 0.65 0.62 0.60 0.59 0.60 0.77 0.36 0.57
Gunshots 0.62 0.72 0.67 0.57 0.64 0.61 0.61 0.52 0.57 0.63 0.52 0.58

Avg. 0.55 0.61 0.58 0.57 0.67 0.62 0.69 0.46 0.57 0.79 0.37 0.58
Violence 0.48 0.68 0.58 0.55 0.57 0.56 0.61 0.51 0.56 0.64 0.49 0.56
Feature fusion 0.52 0.71 0.61 0.58 0.69 0.63 0.74 0.53 0.63 0.74 0.49 0.61

Table 1. Accuracy of validation and testing for C3D and CNN-LSTM network. Also, the performance of each network under different
scenarios. The evaluation metrics are: Average of true positive (TP), true negative (TN), and normalized accuracy. Best results in bold.

Acc.) over different experiments. Table 1 reports the average accu-
racy and cost function for both validation and testing on C3D net-
work. It also reports the average value across whole concepts.

Additionally, Fig. 2 shows a summarized view on the normalized
accuracy only in the case of evaluating the performance of the net-
works on testing step. At the following we discuss the achieved per-
formances by comparing the behavior of networks with each other.

Discussion. Training a DNN to detect violence is a hard task,
mainly due to the highly subjective nature of the theme. We chose
to train independent networks for more specific concepts in order
to find a more robust method to solve this problem — a divide-to-
conquer approach. During the experiments, the machine memory
constraints allowed small batches to be processed in parallel, reduc-
ing the training time considerably.

We were able to achieve some interesting results when aggre-
gating concepts with another network for final decision making. Our
experiments with C3D showed that the network was able to identify
better concepts such as explosions and fights, that have a high corre-
lation with movement. While the more still concepts such as blood
and cold arms did not perform so well for this network. This can
be explained by the nature of the concept and how the network pro-
cesses its input. While we were feeding the network with video clips
of 32 frames (the movies themselves were shot in 25 frames per sec-
ond), these related concepts are more susceptible to only appear in a
small portion of the clip, and this can negatively influence training.

Since we are motivated to detect violence in general, we com-
pare two methods: (i) Training the models for the violence con-
cept, which had a theoretical average testing accuracy of 62% with
C3D and 58% with CNN-LSTM; and (ii) training another network
to combine all specific concepts in order to detect violence from the
features extracted for each individual network. With this method, we
achieved 63% of classification accuracy for the testing set with C3D
network and 61% accuracy with the CNN-LSTM network, both re-
sults outperforming each of our networks individually when trained
to detect the high-level concept of violence directly (the one without
the combination of individual concepts). This shows the separation
of concepts for detecting violence leads to better results than just
trying to detect violence directly.

Comparing both models, we had similar results for the fusion
network in the testing set. Figure 2 depicts a comparison of the test-
ing set for each network. C3D tends to achieve better results for
almost all concepts and for the fusion itself. The difference between
the movement-based concepts and the still ones is more apparent
in the C3D network as well, while the CNN-LSTM model remains

more stable with its accuracy across all concepts.
When we compare the accuracies between the testing and vali-

dation set, we find it interesting that the C3D model had a smaller
difference from the validation to the testing set. We interpret this as
a higher robustness of this model, in comparison with the significant
higher accuracy for the validation set in the CNN-LSTM model.

The fusion network also shows its relevance when we compare
its results with the average accuracy of all the individual concepts.
For example, in the testing set for CNN-LSTM, the average accuracy
of the networks for individual concepts was 58%, while the accuracy
of the respective fusion network was 61%.

A network trained directly for the violence detection problem –
i.e., without relying on individual concepts and their fusion – yields
56% accuracy for both C3D and CNN-LSTM compared to the 63%
and 61% of our proposed method in each network, respectively.

5. CONCLUSIONS AND FUTURE WORK

Detecting violence is very important for many applications, but its
high subjectivity makes it hard for a generalized model to have high
accuracy. Our method tries to incorporate more specialized concepts
on what can be classified as a violent scene in the foreground of vio-
lence detection. This opens up the field to not only identify violence,
but what kind of violence is involved in the scene. Also, it simpli-
fies the concepts the neural network has to deal with, making the
experiments more easily comparable.

Using two networks intended to detect features related to the
passage of time and movement yielded us better results in concepts
that were closely related to movement, such as fights and explosions,
while more static concepts such as blood and cold arms followed
close behind in terms of accuracy. In the future, combining fea-
tures learned in these networks with another network, more suited
for the detection of objects in still images, can lead us one step fur-
ther in solving this difficult problem. Our experiments already show
that specializing a network in different concepts is appropriate to de-
tect violence than training a network to detect a higher-level concept
(Our results of 63% vs. 56%). We can also train different concepts
in different network models if needed be.

It is also interesting to note that C3D had a better true-negative
rate, while CNN-LSTM had a better true-positive rate, signaling that
maybe a combination of both networks can achieve a higher accu-
racy. Future work will also be devoted to develop this combination
in order to boost accuracy for each individual concept as well as the
fusion of them.
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