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ABSTRACT

Social Networks (SN) and Instant Messaging Apps (IMA) are
more and more engaging people in their personal relations
taking possession of an important part of their daily life. Huge
amounts of multimedia contents, mainly photos, are poured
and successively shared on these networks so quickly that is
not possible to follow their paths. This last issue surely grants
anonymity and impunity thus it consequently makes easier
to commit crimes such as reputation attack and cyberbully-
ing. In fact, contents published within a restricted group of
friends on an IMA can be rapidly delivered and viewed on a
SN by acquaintances and then by strangers without any sort of
tracking. In a forensic scenario (e.g., during an investigation),
succeeding in understanding this flow could be strategic, thus
allowing to reveal all the intermediate steps a certain content
has followed. This work aims at tracking multiple sharing on
social networks, by extracting specific traces left by each SN
within the image file, due to the process each of them applies,
to perform a multi-class classification. Innovative strategies,
based on deep learning, are proposed and satisfactory results
are achieved in recovering till triple up-downloads.

Index Terms— Social networks, image forensics, deep
learning, image sharing, multiple up/downloads.

1. INTRODUCTION

The explosion of mobile cameras nowadays triggered tremen-
dous amount of multimedia data and social networks are the
privileged channels for their uncontrolled delivery. Neverthe-
less, due to the increasing popularity of user-friendly editors,
image manipulations are carried out easier than ever. Unfor-
tunately, those concerns are not the only side of the story. Re-
cent advances in AI-based technologies enable the generation
of artificial visually plausible images that are indistinguish-
able from real ones. If those tools or technologies are abused,
the negative impact of such malicious images could be hardly
measurable. In the last decade pioneering methods have been
invented to support the validation of images in various aspects
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for instance: exposing image forgeries [1], identifying the ac-
quisition camera [2], linking images with respect to their ac-
quisition cameras [3], establishing the relationships of near-
duplicate images [4]. By the recent advance of deep learning
and big amount of data available, several forensic problems
can be solved at better performance [5, 6, 7, 8]. Despite the
fact that multimedia forensics methods are moving forwards
and exposing their potential on in-the-lab data, their robust-
ness is questioned on images coming from SNs, since when
uploaded and shared via SN platforms images undergo strong
processing such as JPEG compression and resizing, which
substantially remove forensic traces [9]. Indeed, to optimize
transfer bandwidth as well as display quality, most SNs en-
force their own compression/resizing policy, which is gener-
ally neither published nor fixed [10]. Those concerns raise
the need to identify the SN platform or sharing apps in order
to recover partial knowledge about the provenance of the im-
age under investigation. The case of single sharing was first
investigated in [11] and later extended in [12] by analyzing
the histogram of DCT coefficients. Those works ignored in-
formation contained into metadata from JPEG headers, which
were shown to be highly distinctive across different platforms
[10, 13]. Nevertheless, such information only characterizes
the last sharing platform. Traces of multiple JPEG compres-
sion instead reside in DCT coefficients [14, 15].

In this work, we tackle the problem of tracing back the
history of images shared multiple times over SNs by exploit-
ing traces left in DCT coefficient maps and information from
JPEG headers. The final goal is to identify the platform or the
chain of platforms that an image has been shared through. The
main achievements of the paper are: i) the combined use of
image content and metadata based features exploiting a deep
learning framework; ii) the detection of the over-SNs path an
image follows, dealing with single-double-triple sharing.

2. THE PROPOSED METHODOLOGY

This section introduces the proposed method by firstly de-
scribing the adopted features based on DCT coefficients (Sec.
2.1) and on image metadata (Sec. 2.2). Sec. 2.3 describes the
way these features are combined within the proposed CNN.
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Such CNN, whose architecture is sketched in Fig. 1, takes as
input a DCT coefficient map ofB×B (B is multiple of 8) and
outputs probability scores over class labels. Two solutions are
proposed and compared: one based only on DCT features,
named P-CNN (Patch-based CNN), and another which takes
into account the fusion of DCT and metadata features, named
P-CNN-FF (Patch-based CNN and Feature Fusion).
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Fig. 1. Architecture of P-CNN and P-CNN-FF.

2.1. DCT coefficient-based features

A typical way to learn statistics of DCT coefficients on each
spatial frequency is computing their histogram, which has
been successfully incorporated into CNN architectures [16,
17]. Since the number of histogram bins in [16] is equal to
the number of Gaussian distributions, computing such his-
togram requires evaluating multiple Gaussian PDFs of each
input value. Due to its computational inefficiency, we adopt
the simpler approach in [17], where histogram computation is
done merely through convolution and sigmoid activation. De-
noteDc1,c2 the B

8 × B
8 matrix containing DCT coefficients as-

sociated to AC frequency (c1, c2) (DC frequency is ignored).
The accumulative histogram Ac1,c2 at bin b is computed as:

Ac1,c2(b) =
64

B2

∑
i,j∈[1,B8 ]

σ (γ(Dc1,c2(i, j)− b)) , (1)

where σ(·) is the sigmoid function. Ac1,c2 is the number
of coefficients larger than b. Indeed, if γ is set to a large
value (106 in [17]), the sigmoid function will output 1 if
Dc1,c2(i, j) is essentially bigger than b and 0 otherwise. The
final histogram is obtained by differentiating neighboring bins
of Ac1,c2(b) through 1D convolution with kernel [1,−1]. In
[17], bin edges b can be tunable during training. In our CNN,
however, learning b is infeasible due to gradient vanishing, as
σ(·) ouput always reaches its extreme, i.e., 0 or 1. Thus, we
fix b as increasing integer values from −50 to 50 and obtain
an accumulate histogram of 101 bins [11].

Histograms of 63 AC DCT coefficients are then fed to
the proposed P-CNN composed by 3 consecutive convolu-
tional layers of receptive field 5 × 5 with kernels dimension
8, 16, 32 respectively. Then activation is added after each
convolution layer to obtain non linearity, followed by max
pooling with stride [2, 2] to reduce the size of feature maps.

Afterwards, we incorporate the statistical moments layer de-
scribed in [18] to extract 4 statistical values (max, min, mean
and variance) of each of 32 feature maps. This layer signifi-
cantly reduces dimensionality of feature maps, and stabilizes
the training. Since training with both variance and mean com-
putation might lead to instabilities, thus we then decided not
to use variance. Subsequently, max, min and mean values of
each of feature maps are concatenated in a vector of 96 fea-
tures (3× 32) and fed to Multilayer Perceptron (MLP) classi-
fier (two hidden layers of 128, 64 hidden units and one output
layer of K output units), and probabilities over K classes are
computed through K-way softmax (see Fig. 1). P-CNN is
trained up to 100 epochs using Adam optimizer. The initial
learning rate is set to 10−4 and exponentially decayed after
50 epochs to improve convergence.

2.2. Metadata-based features

The analysis in [13] has shown that information from JPEG
header are strongly discriminant for identifying the last shar-
ing platform. As SNs employ their own JPEG compression
and resizing, quantization tables and image size can be con-
sidered as useful cues. Furthermore, specifications of encod-
ing process also present peculiarities of SN platform. Fol-
lowing [13], we have extracted this set of 152 metadata-based
features:

• Quantization tables (128 features): quantization tables
of luminance and chrominance channels reflecting the
quality factor of the (last) JPEG compression.

• Huffman encoding tables (2 features): number of en-
coding tables used for AC and DC component.

• Component information (18 features): 6 features, each
for Y-Cb-Cr, describe component id, horizontal/vertical
sampling factors, quantization table index, AC/DC cod-
ing table indices.

• Optimized coding and progressive mode (2 features):
binary values indicating the use of these two modes.

• Image size (2 features): min and max image dimension.

2.3. Feature fusion

To leverage the distinctive power of deep features of P-CNN
and metadata-based features, we use the CNN to extract the
4 statistical values (max, min, mean, variance) of each of 32
feature maps so it yields 4 × 32 = 128 features available for
each image patch, as shown in Fig. 1. Although variance is
treated as constant during P-CNN training due to instability,
once P-CNN is optimal, these features encode the variability
of CNN feature maps. Thus, the P-CNN-FF variant, exploit-
ing both types of features, use 128 deep features (4 × 32)
concatenated with 152 metadata-based features, thus working
on a 280-d feature array. The final classifier is simply a MLP
classifier followed by K-way softmax. P-CNN-FF is trained
on concatenated features for 100 epochs using Stochastic Gra-
dient Descent with momentum 0.9, initial learning rate 10−2.
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The learning rate is divided by 5 if the training loss does not
decrease after two consecutive epochs.

3. TEST SET-UP AND EXPERIMENTAL RESULTS

This section describes the experimental set-up in terms of car-
ried out tests and adopted datasets (Sec. 3.1) and achieved
results in different application scenarios (Sec. 3.2 and 3.3).

3.1. Datasets and test configurations

In order to evaluate the classification performances of the
proposed techniques in tracking the different path followed
by an image on various SNs, two different datasets have been
built 1. The first one, generated by the RAISE dataset [19],
is named R-SMUD (RAISE Social Multiple Up-Download)
and contains images shared over three SNs: Facebook (FB),
Flickr (FL) and Twitter (TW). 50 images (raw format) have
been selected from RAISE and cropped on top-left cor-
ner at sizes: 377 × 600, 1012 × 1800 and 1687 × 3000
with an aspect ratio of 9 : 16. All cropped images are
subsequently JPEG compressed (the independent JPEG
group’s software has been adopted) at quality factors QF =
50, 60, 70, 80, 90, 100. This yields to 900 images in total,
shared at maximum 3 times through the three platforms.
By considering all the possible combinations with repeti-
tions, we get Comb =

∑J
k=1 (SN)k, where SN represents

the number of social networks (SN = 3) and J indicates
the maximum number of sharing (e.g., for J = 3 it yields
Comb = 31 + 32 + 33 = 39).

The second dataset, called V-SMUD (VISION Social
Multiple Up-Download) consists of 510 JPEG images from
VISION dataset [9] shared via FB, FL, TW, at maximum 3
times, following different testing configurations.

For each dataset, three testing configurations have been
evaluated by varying the number of considered up-downloads
and, consequently, of the number of classes to be recognized:

• C1: images shared once (J = 1) via FB, FL, TW re-
sulting in a 3-class classification problem.

• C2: images in C1 plus their double sharing instances
(J = 2), resulting in a 12-class classification problem.

• C3: images in C2 plus their triple sharing instances
(J = 3), resulting in a 39-class classification problem.

Each class will correspond to the exact path followed by an
image from a single bounce to a double bounce (e.g., FB-FL)
till a triple bounce (e.g., FB-TW-FB, where the image up-
loaded on Facebook is then shared on Twitter and after the
download it is shared again on Facebook). The proportion
among training, validation and test images is 80%, 10% and
10% respectively, while image patches of 64 × 64 pixels are
used as both P-CNN and P-CNN-FF input. Scene-disjoint
splitting strategy has been employed to avoid images of the

1Datasets can be downloaded at http://loki.disi.unitn.it/R-V-SMUD/

same scene appearing simultaneously in the training, valida-
tion and test set.
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Fig. 2. Confusion matrices (image level) on V-SMUD dataset
for configuration C2 for (a) P-CNN and (b) P-CNN-FF .

3.2. Experiments on single and double up/download

In this subsection experimental results for the cases of single
and double up/download (C1 and C2 respectively) are pre-
sented in comparison with two state-of-the-art methods [11]
and [12]. In Table 1, the different achieved performances are
listed in terms of accuracy for 2 levels of analysis: patch level
and image level. Image-level accuracy is obtained by major-
ity voting from all image patches. It can be observed that the
P-CNN approach, though providing satisfactory results, does
not succeed in outperforming previous methods (except for
the V-SMUD dataset at image level) while the P-CNN-FF one
improves all other methods achieving very good results, pro-
viding a satisfactory accuracy also for C2. By looking at Fig.
2, the improvement achieved with P-CNN-FF with respect to
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Table 1. Performance (Accuracy %) comparison on C1 and C2.

Method
R-SMUD V-SMUD

Patch level Image level Patch level Image level
C1 C2 C1 C2 C1 C2 C1 C2

[11] - - 93.70 39.91 - - 90.20 46.73
[12] 93.25 51.38 94.81 45.18 92.56 60.22 98.69 54.90

P-CNN 85.63 45.35 89.63 43.24 85.84 53.79 100.00 58.82
P-CNN-FF 99.87 73.19 99.87 65.91 100.00 81.97 100.00 77.12

Table 2. Performance (Accuracy %) comparison on C3.

Method
R-SMUD V-SMUD

Patch Image Patch Image
[11] - 17.29 - 23.68
[12] 17.23 16.95 17.95 16.41

P-CNN 20.91 19.32 26.96 27.10
P-CNN-FF 43.41 36.18 52.68 49.72

(a) R-SMUD

(b) V-SMUD

Fig. 3. Diagonal of the confusion matrix for C3 on (a) R-
SMUD and (b) V-SMUD (same consecutive SNs aggregated).

P-CNN is evident and the classification is very accurate if we
do not consider the classes when Twitter is the final social
network (see Fig. 2(b)). Furthermore, another interesting re-
sult is obtained if we consider only the detection of the final
social network, that is if we take as correct decision when im-
ages, independently from the followed path over the SNs, are
rightly classified according to the last social network; looking
at the confusion matrices in Fig. 2, it is possible to achieve an
accuracy of 92% with P-CNN and 100% with P-CNN-FF (re-
sults on V-SMUD only are reported for sake of conciseness).

3.3. Experiments on triple up/download

In this subsection, results obtained in the more challenging
case where a triple up/download can also happen (C3 with 39
classes) are presented. By looking at Table 2, it can easily
be grasped that performances drastically decrease, though the
proposed P-CNN-FF method definitely provides the highest
accuracy. However, if we give a closer look within the con-
fusion matrices, we can highlight some interesting achieve-
ments. In fact, if we aggregate some of the 39 classes follow-
ing the criterion that consecutive up-downloads on the same
SN do not affect the image (i.e., FB-FB-FL corresponds to
class FB-FL, or FL-TW-TW corresponds to FL-TW), accu-
racy becomes again satisfactory, as depicted in Fig. 3. The
values obtained on the main diagonal of the aggregated con-
fusion matrices are represented for the P-CNN and P-CNN-
FF methods with respect to the two datasets. On the basis
of the adopted criterion, the aggregated classes are now 21
and an overall accuracy of 60.6% is achieved for P-CNN-FF
with respect to the V-SMUD dataset with a gain of around
8% respect to the no-aggregated case. Moreover, if we anal-
yse only the detection of the final SN as in Sec. 3.2, we can
appreciate the same behaviour obtaining again around 100%
accuracy using the P-CNN-FF method for both datasets. So
the introduction of the proposed P-CNN-FF method leads to
the possibility to evidence the paths followed by an image on
SNs satisfactorily up to three shares respect to related works
and it also permits to obtain an almost perfect classification
related to the detection of the last SN of the chain.

4. CONCLUSIONS

In this paper two different CNN methods have been intro-
duced to detect multiple up-download of an image over SNs.
Up to triple sharing has been taken into account and two new
datasets have been introduced. The obtained results demon-
strated a good ability of the proposed CNN-based approach
with features fusion to distinguish among different social plat-
forms determining the exact path the image has followed. In
particular, the combined use of image content and metadata
based features demonstrate its superiority respect to state of
the art techniques. Future works will be devoted to investi-
gate the specific behavior of some SNs and to improve the
accuracy for the triple shares configuration.
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