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ABSTRACT
We propose a supervised, convex representation based audio hashing
framework for bird species classification. The proposed framework
utilizes archetypal analysis, a matrix factorization technique, to
obtain convex-sparse representations of a bird vocalization. These
convex representations are hashed using Bloom filters with non-
cryptographic hash functions to obtain compact binary codes, des-
ignated as conv-codes. The conv-codes extracted from the training
examples are clustered using class-specific k-medoids clustering
with Jaccard coefficient as the similarity metric. A hash table is
populated using the cluster centers as keys while hash values/slots
are pointers to the species identification information. During testing,
the hash table is searched to find the species information corre-
sponding to a cluster center that exhibits maximum similarity with
the test conv-code. Hence, the proposed framework classifies a bird
vocalization in the conv-code space and requires no explicit clas-
sifier or reconstruction error calculations. Apart from that, based
on min-hash and direct addressing, we also propose a variant of the
proposed framework that provides faster and effective classification.
The performances of both these frameworks are compared with ex-
isting bird species classification frameworks on the audio recordings
of 50 different bird species.

Index Terms— audio hashing, bird species classification

1. INTRODUCTION

Acoustic monitoring is a suitable method to monitor and survey
avian populations [1, 2] in their natural habitats. Bird species classi-
fication is an important module in such acoustic monitoring systems
and directly helps in determining the avian diversity of an area of
interest. One of the major problems in designing such a bird clas-
sification framework is the limited availability of labelled training
data. Therefore, it may not be possible to utilize the data intensive
classification frameworks such as deep neural networks (DNN) and
convolutional neural networks (CNN) to their full potential. Hence,
there is a need to develop classification techniques which could per-
form well even in scarcity of labelled training data.

Leveraging recent advances in dictionary learning based hashing
for nearest neighbour retrieval [3, 4], we propose archetypal analysis
(AA) based supervised, convex-sparse hashing for species classifica-
tion. The proposed hashing framework is an alternative to existing
audio classification techniques and can easily be extended to other
purposes such as audio indexing. The framework is characterized
by the utilization of a hashing mechanism for classification and does
not require any explicit classifier or reconstruction error calculations
used in various dictionary learning frameworks. Generally, hash-
ing based nearest neighbour search can be seen as a variant of tem-
plate matching where hash codes act as templates for the train/test

examples. However, the use of class-specific archetypal dictionaries
provides generative modelling characteristics to the proposed frame-
work. Hence, the proposed framework can be seen as a blend of
generative modelling and hash-based template matching. Hashing
based approaches such as [5] have been successful in music infor-
mation retrieval. However, these approaches cannot handle the large
with-in class variabilities which are quite common in bioacoustic
signals. The generative nature of the proposed framework helps in
effectively overcoming this issue.

The proposed hashing framework builds upon the work in [3, 6]
and utilizes archetypal analysis (AA) [7] for acoustic modelling. AA
requires less amount of training data in comparison to other mod-
elling techniques, such as Gaussian mixture models, for providing
effective acoustic modelling [8]. The compressed super-frame (CSF)
representation [6] of bird vocalizations, obtained from the spectro-
gram (by embedding context to each frame), is given as input to
the proposed framework. Each of the input CSF is hashed into a
compact binary code designated as conv-codes using class-specific
AA and Bloom filters [9] (see Section 3). These conv-codes are
clustered in a class-specific manner using K-medoids with Jaccard
coefficient [10] as similarity metric. The cluster centers obtained
from this procedure are used for populating the hash table. The pro-
posed framework utilizes the similarity between test conv-codes and
these cluster centers for classification. Moreover, both conv-codes
and cluster centers are bit strings, hence efficient bit-level operations
can be used to calculate the aforementioned similarity. In this work,
Jaccard coefficient [10] is used as a similarity measure for classifi-
cation.

In addition, this study also proposes a min-hash [11] variant of
the proposed framework. This variant approximates the Jaccard co-
efficient between two conv-codes using min-hashes extracted from
convex-sparse representations. The utilization of min-hashing makes
it possible to use the direct addressing [12] instead of searching the
hash table for classification (see Section 3.4 for details). The direct
addressing reduces the hash table search to a constant time (O(1)),
increasing the computational efficiency of the proposed framework.

The rest of the paper is organized as follows: Section 2 discuss
some of the methods proposed in the literature for bird species clas-
sification using acoustic data. In Section 3, the proposed framework
and its min-hash variant is described in detail. Performance analysis
and conclusion are provided in Sections 4 and 5, respectively.

2. RELATED WORKS

Various methods targeting bird species classification have been pro-
posed in the literature. In some classical methods, the syllables
(the basic unit of birdsong) modelled as frequency and amplitude
modulated sinusoidal pulses are used for identifying bird species
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[13, 14, 15]. However, the use of sinusoidal modelling based clas-
sification is limited to the species producing tonal sounds. Other
methods based on support vector machines (SVM), deep neural net-
works (DNN) and convolutional neural networks (CNN) have also
been proposed for this task. In [16], a convolutional neural network
(CNN), having Segnet [17] like architecture, is proposed to seg-
ment vocalizations from the spectrogram and simultaneously clas-
sifies these bird vocalizations. Hence, this framework overcomes
the problem of segmentation of bird vocalizations before classifica-
tion. However, this network requires pixel-wise labelling of spec-
trograms, which is generally not available. An unsupervised and
scalable feature learning method based on spherical K-means is pro-
posed in [18]. These unsupervised features are shown to provide
good classification performance for a large number of bird species,
using a random forest classifier. In addition, SVM with various dy-
namic kernels such as probabilistic sequence kernel (PSK), GMM
supervector (GMMSV) kernel, GMM-UBM mean interval (GUMI)
kernel, GMM-based intermediate matching kernel (GMM-IMK) and
GMM-based pyramid match kernel (PMK) have also been used for
bird species classification [19]. In a recent study [6], AA is utilized
to obtain the convex representations for bird species classification.
This framework shows comparable performance to the existing clas-
sification frameworks including DNN and SVM.

3. PROPOSED FRAMEWORK

In this section, we describe the convex-sparse audio hashing in de-
tail. First, we explain the process for obtaining archetypal dictionar-
ies and the hash table. Then, the process to classify a given audio
recording is described.

3.1. Preprocessing and dictionary learning
The audio recordings are converted into compressed super-frame
(CSF) [6] representation by concatenating W neighbouring frames
of the spectrogram and projecting the concatenated vector on a
random Gaussian matrix. The concatenation helps in effectively
capturing the frequency-temporal modulations that give species-
specific nature to bird vocalizations, while random projections help
in compressing the concatenated vectors (Wm-dimensional to K-
dimensional, where m is the number of frequency bins in a frame
and K << Wm). More details about CSF representation can be
found in [6]. Only CSFs corresponding to the vocalization regions
of an audio are used for learning dictionaries. A semi-supervised
segmentation method proposed in [20] is used here for segmenting
bird vocalizations.

In this work, archetypal analysis (AA) [7] is employed to obtain
the class-specific dictionaries from the CSF representation. The
CSFs obtained from vocalizations of a species are pooled together
to form a matrix X ∈ RK×l, where K is the dimensionality of the
CSFs and l is the number of pooled CSFs. This matrix X is factor-
ized as: X = DA. The dictionary D ∈ RK×d has d archetypes
that model the convex hull of the data and characterize the extremal
rather than the average behaviour as provided by other acoustic
modelling techniques such as Gaussian mixture models. These
archetypes are the convex combination of input data points such that
D = XB. The archetypal dictionary, D can be obtained by solving
the following optimization problem:

argmin
B,A

bj∈∆l,ai∈∆d

‖X−DA‖2F = argmin
B,A

bj∈∆l,ai∈∆d

‖X−XBA‖2F ,

∆l , [bj � 0,‖bj‖1 = 1],∆d , [ai � 0, ‖ai‖1 = 1].

(1)

Here ai and bj are columns of A ∈ Rd×l and B ∈ Rl×d,

respectively. This optimization objective can be solved using the
block-coordinate descent scheme. More details about the imple-
mentation of AA can be found in [7]. The final dictionary Df is
obtained by concatenating all the class-specific dictionaries: Df =
[D1D2 . . .Dq], where Dq is the archetypal dictionary of the qth
class.

3.2. Generating conv-codes and populating hash table
A convex sparse representation (yi) is obtained by projecting a CSF
(xi) on a simplex corresponding to the dictionary, Df ∈ RK×qd (qd
is the number of archetypes from all classes):

yi = argmin
yi

yi∈∆qd

‖xi−Dfyi‖22 (2)

where ∆qd , [yi � 0, ‖yi‖1 = 1].
The active-set algorithm proposed in [7] is used to solve equa-

tion 2. The convexity constraints on the decomposition leads to spar-
sity such that only few coefficients of yi are significant [7]. The
archetypes corresponding to these significant coefficients have max-
imum contribution in representing the CSF. The set formed by in-
dices of the top Z coefficients having maximum magnitudes in con-
vex sparse representation is termed as effective-set. An effective-set
is computed for each CSF extracted from training audio recordings.
Ideally, a characteristic or fixed set of archetypes contribute to the
possible effective-sets for vocalizations of each bird species. Hence,
effective-sets obtained for different bird species should be different,
making them a suitable representation for the species classification
task.

The set operations, required to work with effective-sets, are usu-
ally computationally expensive. On the other hand, the bit-level op-
erations or manipulations in binary strings are relatively computa-
tionally efficient. Hence, these effective sets are converted into com-
pact binary strings or conv-codes using Bloom filters [9]. Bloom
filters are designed to facilitate the set membership queries in an ef-
ficient manner by storing the information about the presence/absence
of given elements in compact binary strings. To obtain a conv-code
for a given effective set using Bloom filters, initially all bits in conv-
code are set to 0. Then, the non-cryptographic hash functions of
Bloom filters hashes each element of an effective set to one of the
locations of the conv-code, where the corresponding bit is flipped to
1, marking the presence of that element in the given effective-set.
These hash functions are a sequence of bit-level operations applied
on an input element to produce a digest that corresponds to one of
the location on the conv-code.

Conv-codes extracted from the training audio recordings are
used for populating the hash table. The conv-codes of each class
are clustered using K-medoids (with Jaccard coefficient as the sim-
ilarity metric) to obtain T cluster centers. In K-medoids clustering,
an input data point is the medoid or the cluster center. Hence, the
cluster centers obtained using K-medoids are subset of the training
conv-codes. These cluster centers are used as keys, pointing to the
respective species or class label, in the hash table. Thus, the hash
table has qT entries, where q is the number of classes. It must be
noted that qT is significantly less than the number of input CSFs.
Figure 1 depicts the process of creating the hash table from training
input audio recordings of two bird species.

3.3. Classification
In this section, we discuss the classification strategy employed for
a test audio recording. Initially, a test input audio recording is
processed to segment the bird vocalizations regions from the back-
ground. A segmented bird vocalization is represented by a set of
CSFs, X = [xt

1x
t
2 . . .x

t
n . . .xt

s], where xt
n is the nth CSF in the
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Fig. 1. Illustration of the proposed convex sparse hashing approach for two species. A dictionary of 20 archetypes is used for obtaining
convex representations. First ten archetypes ((1-10) correspond to species 1 while remaining ten archetypes (11-20) correspond to species 2.
The cluster centers obtained by class-specific K-medoids clustering (T=2) are used to obtain the hash table having 4 entries (2 per species).

test vocalization. A convex-sparse representation (yt
n) is obtained

for CSF (xt
n) using equation 2. This CSF, xt

n, is represented by an
effective-set obtained by choosing the indicies of the top Z coeffi-
cients having maximum magnitudes in yt

n. Finally, xt
n is converted

into a conv-code (Ct
n) using the Bloom filter. During classification,

this conv-code is matched with all the conv-codes used for populat-
ing the hash tables during training. The hash table entry that exhibits
maximum similarity with Ct

n is regarded as its nearest neighbour
and Ct

n is assigned the species label pointed by the respective hash
table entry. In this work, we have used Jaccard coefficient [10] as
a metric for this matching. The Jaccard coefficient between the test
conv-code and the hash table entry compute the extent of intersec-
tion between their corresponding effective-sets. As discussed earlier,
the possible effective-sets for each class consist of a particular set
of archetypes and ideally, this set of archetypes is unique for each
bird species. Hence, two effective-sets belonging to same species
exhibits maximum intersection and their corresponding conv-codes
exhibit maximum Jaccard similarity.

Each test CSF in X is classified into one of the available bird
classes. A voting rule is applied on these CSF wise decisions to get
the final species label of the bird vocalization represented by X .

3.4. Reducing computation using min-hashing
The retrieval time required to find a best matched conv-code from the
hash table is O(qT ), where qT is the number of hash table entries.
Although bit-manipulation operations are fast, the required compu-
tation to find the best matched conv-code can be reduced further.
To decrease the retrieval time, we propose a variant of the proposed
framework that utilizes min-hashing [21, 11] on the convex-sparse
representations. To obtain the min-hash, convex-sparse is randomly
permuted and the indices of Z most significant coefficients in this
permuted representations are noted. The first of these indices act
as min-hash for the convex-sparse representation under processing.
It has been shown in the literature that the probability of two sets
having same min-hash is equal to the expected Jaccard similarity
between these sets [22, 21]. Hence, it can be inferred that two sets
having high similarity are most likely to produce the same min-hash.

Based on this, we propose to use direct addressing [12] for cre-
ating a hash table whose keys are min-hashes and values are corre-
sponding label information. An array (a data-structure) can be seen
as over-simplified example of the direct addressing. The index of an
array is a key and the value corresponding to this key can be obtained
by directly accessing the memory corresponding to this index. In
this work, min-hashes are equivalent to indices of array and value at
each index is the corresponding species label. Since min-hashes are
indices of coefficients of the convex-sparse representation, the size
of this array is equal to the number of archetypes in the dictionary.
For testing a CSF, min-hash is obtained for its convex representation.
The hash table is directly accessed at the location of this min-hash

to obtain the species label. This hash table look-up requires O(1)
computation only.

4. PERFORMANCE ANALYSIS
4.1. Dataset Used
The proposed framework is evaluated on a dataset1 containing au-
dio recordings of 50 different bird species, obtained from three dif-
ferent sources. The recordings of 26 bird species were obtained
from the Great Himalayan national park (GHNP), in north India.
These recordings were used in [19] for performance comparison.
The recordings of 7 bird species were obtained from the bird audio
database maintained by the Art & Science centre, UCLA [23]. The
remaining 17 bird species audio recordings were obtained from the
Macaulay Library [24]. All the recording used here are 16-bit mono,
sampled at 44.1 kHz and are of durations varying from 15 seconds
to 3 minutes. The information about these 50 species along with the
total number of recordings and vocalizations per species is available
at https://goo.gl/z6UEQa.

4.2. Experimental setup
The spectrograms are obtained from each input audio recording by
using the STFT with 512 FFT points on a frame rate of 20 ms with
50% overlap. The window size W = 5 is used to obtain super-frame
representations which results in 1285-d (1285 = (257 × 5)) rep-
resentation. Random projections are used to compress this 1285-d
representation to a 500-d representation. A 25-atom archetypal dic-
tionary is learned for each class and thus the final dictionary having
1250 (50×25) atoms is used to obtain the convex sparse representa-
tions. The parameter Z = 4 is used for obtaining effective-sets from
these convex representations. A Bloom filter with 2 different non
cryptographic hash functions i.e. Murmur3 [25] and SpookyHash
[26] is used to convert the effective sets into 1024-bits conv-codes.
K-medoids with 10 cluster centers (i.e. T = 10) is applied on train-
ing conv-codes of each class to obtain the hash table entries. After
training, the hash table containing 500 distinct entries (10 × 50) is
obtained. All the parameters mentioned in this section are obtained
empirically on a validation set.

Comparative methods: The classification performance of the pro-
posed framework and its min-hash variant is compared with various
existing bird species classification methods such as CCSE frame-
work [6], SVM with dynamic kernels (IMK, PMK, GUMI and PSK),
spherical K-means with random forest based framework proposed in
[18] and a DNN based approach proposed in [19]. CCSE framework
is also based on super-frames and class-wise archetypal analysis, but
it uses reconstruction error for classification. For SVM and DNN
based classification schemes, MFCC using delta and acceleration
coefficients are used as the feature representation. In addition, we

1We are in process of making the dataset public.
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Fig. 2. Classification performances of different methods obtained with (A) 33.33% and (B) 20% of the training data (Averaged across three
and five folds respectively).

have also compared the proposed framework with incoherent dictio-
nary hashing (IDH) [3] for the application of species classification,
using nearest neighbour retrieval. For a fair comparison, an inco-
herent dictionary of 1250 atoms (same as the one used in the pro-
posed framework) is used in IDH. Apart from that, the performance
of the proposed framework is also compared with its min-hash vari-
ant (MHV).

Train/test data distribution: The 20% of the vocalizations present
in the audio recordings of each class are used for the validation pur-
poses. These vocalizations are not used for training or testing. The
remaining vocalizations are used for performance comparison using
a three-fold cross validation scheme. In each fold, 33.33% of the vo-
calizations (per class) are used for training while the remaining are
used for testing. The results presented here are averaged across three
folds.

4.3. Results and Discussion
The classification performance of the proposed framework along
with other comparative methods is shown in Fig. 2(A). Following
inferences can be made from this figure:

• The classification performance of the proposed framework is
comparable to the DNN i.e. DNN shows a relative improvement
of only 2.1%.

• Similar classification performances are observed for CCSE and
the proposed framework, with CCSE showing a relative improve-
ment of 0.9% over the proposed approach. This observation in-
dicates that maximum intersection between effective-sets of two
super-frames is same as the minimum class/dictionary specific
reconstruction error used for classification, as in the CCSE ap-
proach.

• The proposed framework outperforms IMK, PMK, GUMI, PSK
and SKM by a relative improvement of 3.44%, 2.76%, 4.13%,
2.3% and 0.6%, respectively.

• The incoherent dictionary learning used in IDH could not perform
up-to the level of AA used in the proposed framework. This is due
to the fact that the proposed framework utilizes class-specific AA
dictionaries which provide more discriminative representations.

• Min-hash variant shows comparable performance to SVM based
frameworks. However, on comparison with the proposed frame-
work, min-hash variant shows a drop of 3.84% in classification
accuracy. As discussed earlier, this drop in classification accuracy
occurs due to the loss of information incurred while representing
effective-sets by one index i.e. min-hash only. However, using
min-hashing decreases the required classification time by approx-
imately three times.

Although the proposed method performs similar to CCSE frame-
work, however it is computationally efficient. The minimum recon-
struction error classification used in CCSE is computationally ex-
pensive in comparison to the indexing. In our experiments, it has
been observed that average time taken for classifying a test bird vo-
calization using the proposed hashing framework is 0.13 seconds as
opposed to 0.4 seconds in CCSE. Similarly, for the min-hash vari-
ant, this average classification time is 0.05 seconds. Hence, min-
hash variant makes up for the drop in accuracy by providing rapid
classification. The running times mentioned here are the average of
ten runs for classifying approximately 3200 vocalizations.

Performance in low data conditions: To analyse the performance
of the proposed framework and other comparative methods in low
data conditions, we conducted the same experiment, with the same
parameter setting but with different train/test data distribution. Here,
we have used only 20% of the available recordings per class for
training and the rest for testing. In this experiment, a 5-fold cross-
validation is used for performance comparison. The results of this
experiment are illustrated in Fig. 2(B). It can be observed that all
the methods exhibits a drop in average performance when compared
with the previous experiment (using 33.3% recordings for the train-
ing). However, this drop is more significant for methods that uses
classifiers such as DNN, SVM and random forest. The relative drops
of 15.34%, 14.4%, 16.05%, 14.1%, 10.69% and 16.03% are ob-
served for IMK, PMK, GUMI, PSK, SKM and DNN, respectively.
On the contrary, dictionary learning methods (CCSE, IDH, the pro-
posed framework and min-hash variant) observe a relatively low
drop in average classification performance. The relative drops of
8.13%, 8.04%, 7.93% and 8.18% are observed for CCSE, IDH, the
proposed framework and min-hash variant. This justifies the claim
that the proposed framework requires less amount of training data to
provide effective classification as compared to the SVM and DNN
based methods.

5. CONCLUSION

In this work, we proposed an AA based convex sparse hashing
framework for bird species classification. Bloom filters are used to
convert convex representations into binary conv-codes, that are fur-
ther used for indexing and classification. The experiments demon-
strate that the classification performance of the proposed framework
is similar to state-of-the art methods. Our experimentation has vali-
dated that this framework requires less training data in comparison
to the SVM and DNN based classification frameworks. Apart from
min-hashing, no extra effort has been made to reduce the length
conv-codes and to make the retrieval time more efficient. In future,
we will work on this aspect to further decrease the time required for
classification.

8244



6. REFERENCES

[1] T Scott Brandes, “Automated sound recording and analysis
techniques for bird surveys and conservation,” Bird Conserva-
tion International, vol. 18, no. S1, pp. S163–S173, 2008.

[2] C. H. Lee, C. C. Han, and C. C. Chuang, “Automatic classifi-
cation of bird species from their sounds using two-dimensional
cepstral coefficients,” IEEE Trans. Audio, Speech, Language
Process, vol. 16, no. 8, pp. 1541–1550, Nov 2008.

[3] A. Cherian, “Nearest neighbors using compact sparse codes,”
in Int. Conf. Mach. Learn., 2014, pp. 1053–1061.

[4] A. Cherian, S. Sra, V. Morellas, and N. Papanikolopoulos, “Ef-
ficient nearest neighbors via robust sparse hashing,” IEEE
Trans. Image Process., vol. 23, no. 8, pp. 3646–3655, 2014.

[5] A. Wang, “The shazam music recognition service,” Communi-
cations of the ACM, vol. 49, no. 8, pp. 44–48, 2006.

[6] A. Thakur, V. Abrol, P. Sharma, and P. Rajan, “Compressed
convex spectral embedding for bird species classification,” in
Proceedings of Int. Conf. Acoust. Speech, Signal Process. (to
appear), April, 2018.

[7] Y. Chen, J. Mairal, and Z. Harchaoui, “Fast and robust archety-
pal analysis for representation learning,” in Proceedings of
Comp. Vis. Pattern Recog., June, 2014, pp. 1478–1485.

[8] V. Abrol, P. Sharma, A. Thakur, P. Rajan, A. D. Dileep, and
A. K. Sao, “Archetypal analysis based sparse convex sequence
kernel for bird activity detection,” in Proceedings of Eusipco,
Aug., 2017, pp. 4436–4440.

[9] A. Broder, M. Mitzenmacher, and A. Mitzenmacher, “Network
applications of Bloom filters: A survey,” in Internet Mathemat-
ics. Citeseer, 2002.

[10] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data
mining, Pearson Education India, 2006.

[11] A. Z. Broder, “On the resemblance and containment of doc-
uments,” in Proceedings of Compression and Complexity of
Sequences., 1997, pp. 21–29.

[12] P. Dorfman, “Table lookup by direct addressing: Key-
indexing, bitmapping, hashing,” in Proceedings of SAS Users
Group Int. Meet., 2001.

[13] A. Harma and P. Somervuo, “Classification of the harmonic
structure in bird vocalization,” in Proceedings of Int. Conf.
Acoust. Speech, Signal Process, May, 2004, pp. 701–704.

[14] P. Somervuo, A. Harma, and S. Fagerlund, “Parametric rep-
resentations of bird sounds for automatic species recognition,”
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 14,
no. 6, pp. 2252–2263, Nov 2006.

[15] P. Somervuo and A. Harma, “Bird song recognition based on
syllable pair histograms,” in Proceedings of Int. Conf. Acoust.
Speech, Signal Process, May, 2004, vol. 5, pp. V–825.

[16] R. Narasimhan, X. Z. Fern, and R. Raich, “Simultaneous seg-
mentation and classification of bird song using CNN,” in Pro-
ceedings of Int. Conf. Acoust. Speech, Signal Process., March,
2017, pp. 146–150.

[17] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet:
A deep convolutional encoder-decoder architecture for image
segmentation,” Trans. Pattern Anal. Mach. Intel., vol. 39, no.
12, pp. 2481–2495, 2017.

[18] D. Stowell and M. D. Plumbley, “Automatic large-scale clas-
sification of bird sounds is strongly improved by unsupervised
feature learning,” PeerJ, vol. 2, pp. e488, 2014.

[19] D. Chakraborty, P. Mukker, P. Rajan, and A.D. Dileep, “Bird
call identification using dynamic kernel based support vector
machines and deep neural networks,” in Proceedings of Int.
Conf. Mach. Learn. App., Dec., 2016, pp. 280–285.

[20] A. Thakur and P. Rajan, “Rényi entropy based mutual infor-
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