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ABSTRACT

In this paper we consider a variant of the dictionary learning
problem where the dictionary has full rank, the coefficients
have a fixed sparsity level, and both the coefficients and
the dictionary are nonnegative. It is equivalent to k-sparse
nonnegative matrix factorization (K-NMF). This model is
encountered in source separation where nonnegative linear
combinations of a few components generate the data points
(samples), such as in hyperspectral images. We first discuss
the impact of nonnegativity on the identifiability of low-rank
sparse component analysis (LRSCA), building upon recent
advances. Then, as a main contribution, we propose two algo-
rithms to train K-NMF: one based on alternating optimization
and exact sparse coding, the other based on a nonnegative
variant of K-subspace. We show on noiseless simulated data
that our methods outperform by a large margin the state of the
art. Finally, we apply our methods for the spectral unmixing
of a hyperspectral image.

Index Terms— dictionary learning, nonnegative matrix
factorization, sparsity, identifiability, subspace clustering

1. INTRODUCTION

Sparse component analysis (SCA) is a dictionary learning
model that leverages sparsity to solve an otherwise ill-posed
problem. Formally, SCA is the following problem:
Definition 1 (SCA). Given a matrix M ∈ Rd×n and an inte-
ger r, find D ∈ Rd×r and B ∈ Rr×n where the columns of
B are at least k-sparse with k < r such that M = DB.

SCA has been central in signal processing over the last
decade, often under the name dictionary learning. In spite of
the large use of this model for various applications such as im-
age denoising, inpainting or classification [1], few conditions
are available that guarantee uniqueness of matrices D and B
satisfying Def. 1 in a deterministic scenario. There are how-
ever many results in probabilistic settings where the columns
of B are drawn from specific distributions; see [2] and the
references therein. Recently, focussing on the low-rank case
(rank(D) = r, r ≤ d), a strong identifiability result was
obtained:
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Theorem 1 ([3]). An SCA decomposition M = DB with
rank(D) = r is essentially unique (that is, up to permuta-
tion and scaling of the columns of D and rows of B) if on
each subspace spanned by all but one column of D, there are⌊
r(r−2)
r−k

⌋
+ 1 data points with spark r (that is, any subset of

r − 1 points are linearly independent).
In this paper, we investigate a constrained version of low-

rank SCA (LRSCA) where factor matrices D and B are re-
quired to be nonnegative. This leads to the following nonneg-
ative LRSCA problem, which is equivalent to k-sparse non-
negative matrix factorization (K-NMF).
Definition 2 (K-NMF). Given a nonnegative matrix M ∈
Rd×n

+ and an integer r, find D ∈ Rd×r
+ and B ∈ Rr×n

+

where the columns of B are at least k-sparse with k < r and
rank(D) = r such that M = DB.

In this paper, we discuss the identifiability of K-NMF and
dedicated algorithms. The contributions of this paper are the
following:
• We show that K-NMF is identifiable under milder condi-
tions than LRSCA for d = 3. Generalization to any rank,
dimensions and sparsity level is a promising direction for fur-
ther research.
• We briefly survey the literature for tackling K-NMF: most
methods rely either on alternating optimization using sparse
nonnegative least squares (sNNLS) or on subspace estima-
tion. We propose two algorithms: an exact combinatorial
algorithm for sNNLS that is used in combination of a stan-
dard alternating approach, and a nonnegative adaptation of
K-subspace.
•We compare the performance of the proposed methods with
existing ones on simulated data sets where the impact of the
dimension d on the performance is studied. The main two
observations are that (i) solving the sNNLS subproblems ex-
actly can significantly impact the quality of the solution, and
(ii) the nonnegative adaptation of K-subspace often outper-
forms alternating optimization methods. Finally, we show-
case K-NMF on spectral unmixing of an hyperspectral image
(HSI) using our proposed methods.

2. IDENTIFIABILITY OF K-NMF

In this section, we discuss the identifiability of K-NMF, mak-
ing use of recent works for the identifiability of LRSCA [3].
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We do not formally prove a general identifiability results in
this short paper, but instead explain why K-NMF requires
milder conditions than LRSCA for identifiability, which is
verified for d = 3. The rationale goes as follows. Suppose
there exist two solutions to the K-NMF problem, and sup-
pose without loss of generality that the data points and ba-
sis elements are scaled so that they belong to the unit sim-
plex (that is, ||M(:, j)||1 = 1 for all j and ||D(:, k)||1 = 1
for all k). Then the data points are located on the the in-
tersection of the convex hull of two polytopes with r ver-
tices. Such an intersection is described by a finite number
of low-dimensional subspaces. In order to ensure uniqueness
of K-NMF, there must be sufficiently many well-located data
points in order for such intersections not to be able to con-
tain them all. Because of nonnegativity, these intersections
are more constrained than for LRSCA. Let us show this for
d = 3; see Fig. 1. In that case, the only non-trivial case is
k = 2, and a solution of K-NMF can be represented as a tri-
angle whose edges contain the data points. If the solution is
not unique, the data points are located on the intersection of
two triangles. Since two triangles can intersect on at most
six points, K-NMF will be unique if there are at least two
data points on each edge and one edge contains at least three
data points. On Fig. 1, adding a single data point on any seg-
ment makes the factorization unique. In the mean time, with-
out nonnegativity, non-unique LRSCA exists with nine data
points, three per subspace spanned by two columns of D [3].
Therefore, regarding identifiability of LRSCA, nonnegativity
plays an important role yet unexplored in the literature, as far
as we know. Consequently, one way to study the identifiabil-

data points
first decomposition
second decomposition

Fig. 1. A case where parameters of K-NMF are not identifi-
able.

ity of K-NMF is to provide sufficient conditions on the data
under which such intersection cannot exist unless the two so-
lutions coincide. However the geometry of such an intersec-
tion can be quite complex, especially since some facets might
belong to both factorizations. Note that K-NMF is identifiable
under the same sufficient conditions as LRSCA stated in The-
orem 1 since it is a particular instance of LRSCA. We conjec-
ture that it can be identifiable under milder assumptions, as it
is the case for d = 3 as discussed above. This is an important
topic for further research.

3. ALGORITHMS FOR K-NMF

Let us now discuss the computational aspects of K-NMF. Us-
ing the Frobenius norm as an error metric, computing K-NMF

can be formulated as the follows

min
D∈Rd×r

+ ,B∈Rr×n
+

‖M −DB‖2F

such that ‖B(:, j)‖0 ≤ k < r for 1 ≤ j ≤ n. (1)

Solving (1) is bound to be difficult, since both NMF and SCA
are NP-hard problems [4, 5].
Existing algorithms Traditionally, both NMF and SCA
are solved using alternating optimization (AO) on D and
B [6, 2]. In the low-rank case, solving (1) with a fixed
B amounts to solving a nonnegative least squares (NNLS)
problem, which can be done efficiently using for example an
active-set method [7] or coordinate descent [8]. However,
solving (1) for D fixed is a challenging task known in the
litterature as nonnegative sparse coding [9] or sparse NNLS
(sNNLS). Similarly to sparse coding, the two most important
families of heuristics to obtain a solution to sNNLS are
•Matching pursuit methods that compute scalar products be-
tween data points and the known D. We refer to these as
Nonnegative Orthogonal Matching Pursuit (NNOMP) vari-
ants [10, 11, 12, 13].
• LASSO methods where sparsity is enforced using a `1 norm
penalty, a convex surrogate of the `0 norm. Various optimiza-
tion solutions exist such as multiplicative update [14, 15], pro-
jected gradient [16] or coordinate descent [8].

On top of these two large families, an adaptation of
K-SVD has also been developped for K-NMF [17]. Both
NNOMP and LASSO approaches have the drawback of solv-
ing the sNNLS subproblems for variable B in a suboptimal
way. Of course these methods have theoretical guarantees of
providing the optimal solution to sNNLS under some condi-
tions on D [18, 19]. However, even if such conditions are
verified for the true D, it is unlikely for such conditions to
be satisfied at each step of the AO scheme. Therefore, AO
using for instance NNOMP will most likely not solve opti-
mally the subproblems of finding B with known D at every
iterations which may lead to rather different solutions than if
the subproblems were solved exactly; see Section 4.

Another class of algorithms for K-NMF are based on sub-
space clustering methods. A well-known subspace cluster-
ing algorithm is an adaptation of k-means, sometimes refered
to as K-subspace [20]. For the sake of simplicity, we only
discuss K-subspace in this paper, but there exist many other
subspace clustering methods; see [21] for an overview. K-
subspace is also an alternating algorithm, but instead of al-
ternating between B and D as discussed above, it alternates
between the estimation of (i) the span of D \D(:, j) for all j
and (ii) the positions of the zero values in each column of
B. In fact, as discussed in Section 2, in the case k = r − 1,
data points lie on the union of r hyperplanes generated by all
columns of D but one. Therefore, knowing to which hyper-
plane each data point belongs, it is possible to use any sub-
space estimation method such as PCA to compute a basis and
scores for these data points. Since K-subspace explores the
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search space in a different manner than the AO methods dis-
cussed above, it may output rather different results, as ob-
served in Section 4. A drawback of K-subspace, on top of
working only for k = r − 1, is that the estimation quality
of D might be more sensitive to noise since D is obtained
by intersecting the estimated subspaces. Moreover, as far as
we know, there does not exist a variant of K-subspace taking
nonnegativity into account.

In the next paragraphs, we propose two algorithms: one
based on AO but solving the sNNLS subproblems exactly,
and the other taking nonnegativity into account within K-
subspace and generalizing for any k. These algorithms are
rather straightforward to develop. What is rather interesting is
our observations from Section 4: the two proposed methods
can outperform standard AO strategies and K-subspace to
recover the true underlying identifiable factors D and B.
ESNA: a combinatorial algorithm As for AO, we propose
to compute K-NMF by solving (1) alternatively for D and
B. As previously, D is updated by solving a nonnegative
least squares problem. However, as opposed to most previous
methods, when solving for B, we solve the sNNLS subprob-
lem up to global optimality using a brute-force approach (fur-
ther work includes using more sophisticated combinatorial
approaches). In a nutshell, for each pattern of r− k zeros and
for each column ofB, a NNLS problem is solved, and the best
solutions is kept. The computational complexity of this step
is
(
r
k

)
O(NNLS)(d, n, k) where O(NNLS)(d, n, k) refers

to the complexity of solving the NNLS minX∈Rk×n
+
||AX −

Y ||F , with A ∈ Rd×k and Y ∈ Rd×n. We refer to this al-
gorithm as Exact Sparse and Nonnegative Alternating least
squares (ESNA). Computing exactly the solution of sNNLS
may seem unrealistic, since it is typically coined as a very
time consuming process with exponential algorithmic com-
plexity. However, in K-NMF, both k and r are typically small,
thus the term

(
r
k

)
may remain sufficiently small in practical

applications (e.g., in HSI, r is of the order of 10-20 while k
is of the order of 2-5). In Section 4, ESNA is used to unmix
a HSI with r = 6 and k = 2. Also, note that the NNLS sub-
problems involve k variables instead of r, where k can be an
order of magnitude smaller than r.

ESNA has a few interesting features. First, it is the best
possible AO algorithm, therefore its performance provide an
upper bound for other AO algorithms to reach. Second, it
can be seen as a subspace clustering algorithm: finding D
means finding the subspaces knowing both data affectation
and scores, while computing all possible k-sparse B means
finding the best affectation of data to k subspaces in terms of
reconstruction error. However, there is no reason to believe
that ESNA is the best subspace clustering algorithm, and in
the following we suggest another nonnegative subspace clus-
tering solution avoiding exponential complexity. Third, since
it is an exact block coordinate descent algorithm, the cost
function always decreases.

NOLRAK: a nonnegative subspace clustering algorithm
While running experiments, we observed that K-subspace
sometimes was able to identify the true underlying solution
while ESNA was failing. Therefore, we propose a second
algorithm adapted from K-subspace taking nonnegativity into
account: NOnnegative Low-RAnk K-subspace (NOLRAK).
Just like K-subspace, NOLRAK alternates between the af-
fectation of each data points and the computation of a basis
for each subspace. However, unlike K-subspace, it estimates
nonnegative coefficients and uses the fact that the subspaces
are generated using the columns of D, and thus does not
resort to intersecting estimated subspaces. Also, each data
point is not affected to only one hyperplane, but rather to
r − k, to account for the knowledge of the sparsity level k.
NOLRAK iterates the two following steps:
Step 1. Knowing D, for each data point mi (1 ≤ i ≤ n) and
for each hyperplane Hj = span(D\D(:, j)), the affectation
of mi to r − k hyperplanes is obtained by computing the dis-
tances ‖mi − ProjHj

(mi)‖2 for 1 ≤ j ≤ r and selecting the
r−k smallest values. This fixes r−k zeros for the ith column
of B. In other words, we assign each data point to the r − k
closest hyperplanes.
Step 2. Knowing the positions of r − k zeros in each column
of B, the values of D and the other coefficients of B are ob-
tained by computing the NMF of M with a fixed support for
B. For this step, we use the so-called accelerated hierarchical
alternating least squares (A-HALS) algorithm for NMF [22].
This step is a generalization of the subspace basis estimation
in K-subspace, but uses NMF instead of PCA.

When using A-HALS which runs in O(dnr) operations
per iteration (like most NMF algorithms [23]), the com-
putational complexity of NOLRAK per iteration is also in
O(dnr). Although NOLRAK requires computing a NMF
at each iteration, it scales linearly in the dimension of the
problem. Hence, it can be applied to large-scale data sets (as
opposed to ESNA which can only be used for small r and/or
small k).

4. NUMERICAL EXPERIMENTS

In this section, we perform some numerical experiments to
assess the performance of ESNA and NOLRAK compared to
existing approaches.
Simulated experiments We are interested in the following
question: “For an exact K-NMF problem that satisfies the
identifiability conditions of LRSCA (Theorem 1), are any of
the algorithms discussed above able to exactly recover the
dictionary D?” Due the space limitation, we only consider
small-scale problems: the rank r is set to 4 and the sparsity
level k to 3 or 2. The number of data points is set to n = 200
for k = 3 and n = 300 for k = 2. We generate entries of
D and B using uniform distributions in [0, 1]. The columns
of the matrix D are normalized, and B is sparsified so that
identifiability is ensured (for k = 3, the four subspaces are
randomly populated, while for k = 2, the six segments are
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populated, each with 50 points). Performance are computed
over N = 100 realizations1. The grid parameter is the sam-
ple dimension d, since a larger d leads to less correlation in
D, thus heuristics such as NNOMP are expected to perform
better as d increases. Initialization is random with optimal
scaling, but we tried a separable NMF initialization [24]
with similar results. Figure 2 presents the performance in
terms of the recovery of D (meaning that the relative MSE
||D−Dcomputed||F

||D||F < 10−4) and average relative MSE of the fol-
lowing methods: ESNA, AO with SuNNOMP [13], truncated
active set [11] (a.set NNOMP), LASSO with coordinate
descent [25] (LASSO-HALS) and NMF with HALS [22]
(NMF-HALS), NOLRAK and K-subspace [20] (KSub). For
LASSO-HALS, we used a grid on the regularization param-
eter λ to choose it, more details are available alongside the
code.
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Fig. 2. Average performance of K-NMF algorithms to recover
D up to 10−4 relative MSE (left) and relative MSE (right) for
k = 2 (top) and k = 3 (bottom).

To help understanding the figure, note that the reconstruc-
tion errors on the factor D are distributed in two clusters: ei-
ther a large error (missidentification, above a few percent of
relative error), or machine precision. The only exception is
LASSO-HALS which never reaches machine precision. We
observe that AO solving inexactly the sNNLS subproblems
(namely, NMF-HALS, LASSO-HALS, SuNNOMP and a.set
NNOMP) do not manage to compute K-NMF reliably. On
the other hand, both ESNA and NOLRAK perform well, and
NOLRAK performs better than ESNA for k = 2 despite be-
ing computationally cheaper. Note that when k = r − 1 = 3,
independently of d, K-subspace can sometimes identify D
when other alternating methods fail.
Spectral Unmixing The Urban hyperspectral image (HSI)2

contains 162 spectral bands with 307 × 307 pixels for each
1Most parameters in the proposed experiment can be toyed with in the

code available online on github at cohenjer/Tensor_codes
2Available at http://www.agc.army.mil/.

band. Noisy bands were removed beforehand. It is a rather
simple and well understood data set: it is mainly composed
of r = 6 types of materials (grass, trees, two types of roof
tops, road and dirt) as reported in [26]. The scene repre-
sents a wallmart, its parking lot and the surrounding area (it
can be found on Google maps with the keywords “copperas
cove texas walmart”). In the K-NMF model, each column
of the matrix M ∈ R162×94249 is the reflectance spectrum
measured for a pixel, each column of D ∈ R162×6 is the
spectral signature of a pure material and each column of B ∈
R6×94249 gives the abundance of the pure materials in the cor-
responding pixel. This HSI has relatively high spatial resolu-
tion hence most pixels contain no more than two materials
so that using k = 2 makes sense. ESNA gives a solution
with relative error ||M−DB||F

||M ||F = 5.08% which, in this case,
performs better than NOLRAK with relative error of 7.91%.
Fig. 3 displays the abundance maps (the matricized rows of
B) which localize the pure materials relatively well.

Fig. 3. Abundance maps extracted by ESNA on the Urban
HSI. From left to right, top to bottom: grass, trees, roof tops
1 and 2, road, dirt.

5. CONCLUSION

In this paper, we have first discussed the identifiability of K-
NMF showing that it requires milder assumption than LRSCA
to obtain essentially unique decompositions. Then, we have
proposed two algorithms, and shown their superiority com-
pared to the state of the art. In particular, we have observed
that (i) solving exactly the sNNLS subproblems within AO
impacts significantly the outcome of the algorithm and al-
lows to obtain significantly better solutions in many cases,
and (ii) algorithms based on subspace clustering are a promis-
ing direction for research as they outperform AO in some
cases. Far from closing the question on identifiability of K-
NMF and on how to compute such decompositions, our re-
sults should be interpreted as an invitation to further study the
theoretical properties and algorithms of K-NMF.
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