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ABSTRACT

Subspace tracking is an important problem in signal processing that
finds applications in wireless communications, video surveillance,
and source localization in radar and sonar. In recent years, it is recog-
nized that a low-dimensional subspace can be estimated and tracked
reliably even when the data vectors are partially observed with many
missing entries, which is greatly desirable when processing high-
dimensional and high-rate data to reduce the sampling requirement.
This paper is motivated by the observation that the underlying low-
dimensional subspace may possess additional structural properties
induced by the physical model of data, which if harnessed properly,
can greatly improve subspace tracking performance. As a case study,
this paper investigates the problem of tracking direction-of-arrivals
from subsampled observations in a unitary linear array, where the
signals lie in a subspace spanned by columns of a Vandermonde ma-
trix. We exploit the shift-invariant structure by mapping the data
vector to a latent Hankel matrix, and then perform tracking over the
Hankel matrices by exploiting their low-rank properties. Numerical
simulations are conducted to validate the superiority of the proposed
approach over existing subspace tracking methods that do not exploit
the additional shift-invariant structure in terms of tracking speed and
agility.

Index Terms— subspace tracking, missing data, shift-invariant
subspace, Hankel matrix

1. INTRODUCTION

Subspace tracking is a classical problem in signal processing [1, 2]
with applications in wireless communications, video surveillance,
and source localization in radar and sonar. In a streaming setting,
data vectors arrive sequentially over time, and the goal of subspace
tracking is to estimate, and possibly track, a low-dimensional sub-
space that explains most of variability in the data without having to
store all the history data in an online manner at a low complexity.

In modern high-dimensional problems, data vectors are some-
times generated at a high rate that overwhelm the processing capabil-
ity of the sensing platforms, and a new challenge is that the data vec-
tors can only be partially observed or contain many missing entries.
There have been a few attempts in recent years to develop subspace
tracking algorithms with missing data, such as GROUSE [3], PE-
TRELS [4], and many others [5–7]; see [2] for an overview. These
methods are made possible by the fact that the high-dimensional data
vectors lie approximately in a low-dimensional subspace, and there-
fore can be effectively recovered even with highly incomplete obser-
vations, motivated by the success of low-rank matrix completion [8].
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This paper is motivated by the observation that the low-dimensional
subspace may possess additional structural properties induced by
the physical model of data, which if harnessed properly, can greatly
improve subspace tracking performance. With the additional struc-
ture, the number of parameters that we need to specify the low-
dimensional subspace is further reduced and therefore, it is possible
to improve the tracking performance with fewer observations if the
structure is respected within the algorithm design.

As a case study, in array signal processing, the data snapshots
collected from a uniform linear array may be modeled as a sum of
a small number of complex sinusoids, which lie in a shift-invariant
subspace spanned by the columns of a Vandermonde matrix. It is
therefore interesting to see if this additional structure can be lever-
aged. In this paper, we study the problem of tracking direction-of-
arrivals in a uniform linear array with randomly subsampled mea-
surements in a streaming setting. Similar problems have been con-
sidered in the batch setting [9], however they cannot be used in the
streaming setting to track changes in the scene.

Instead of directly looking at the data snapshot as a vector, we
resort to the Hankel matrix constructed by the data snapshot as the
first column and the last row, by folding it at certain entry. It is
well-known that the resulting Hankel matrix is low-rank if the num-
ber of sinusoids is small [10], and it is possible to recover the data
snapshot even if it is highly subsampled by performing low-rank ma-
trix completion over the Hankel form [11–13]. Therefore, instead
of performing subspace tracking directly over the data snapshots,
we perform subspace tracking over the Hankel matrices spanned by
the data snapshots, by extending the recursive least-squares formu-
lation in the PETRELS algorithm [4] with a few important modifi-
cations. The final formulation becomes tracking a dynamic Hankel-
structured tensor with low CP-rank, which is related to the algo-
rithms for tracking unstructured tensor data in [5, 14]; yet we em-
phasize our focus here is to demonstrate the potential performance
gain of augmenting matrix-valued data into tensor-valued data by
leveraging known structures, which is not considered before.

The rest of this paper is organized as follows. Section 2 provides
the problem formulation. Sections 3 presents the developed algo-
rithm dubbed Shift-Invariant Subspace Tracking (SIST). Section 4
presents numerical experiments to validate the superior tracking per-
formance of the proposed algorithm in direction-of-arrival estima-
tion. Finally, we conclude in Section 5.

2. PROBLEM FORMULATION AND BACKGROUNDS

The signals impinging on a uniform linear array of length n can be
modeled as a sum of r complex sinusoids, where r is the number of
direction-of-arrivals. At the t-th snapshot, the signal can be written
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as

x[t]? =

r∑
i=1

c[t]ia(fi) := V c[t], (1)

where the atom a(f) is stated as follows:

a(f) =
1√
n

[1, ej2πf , ..., ej2πf(n−1)]T , f ∈ [0, 1). (2)

The subspace matrixV is given asV = [a(f1), ...,a(fr)] ∈ Cn×r ,
f ′is ∈ [0, 1) are distinct, and c[t] = [c[t]i, . . . , c[t]r]

T ∈ Cr repre-
sents the coefficient vector at time t. We assume each snapshot x[t]?

is partially observed, where its observation pattern is indicated by the
vector Ω[t] ∈ {0, 1}n, where Ω[t]i = 1 if the i-th entry of x[t]? is
observed and Ω[t]i = 0 vice versa. Our goal is to recover, and pos-
sibly track if it is changing, the underlying subspace and the corre-
sponding frequencies from the partial observations {Ω[t]�x[t]?}∞t=1

in a streaming fashion, where � denotes the point-wise product.

2.1. Hankel matrix enhancement

Before continuing, we introduce the Hankel matrix enhancement for
a given signal x? = [x?0, x

?
1, ..., x

?
n1+n2−2]T of length n = n1 +

n2 − 1. Define Hx?: Cn1+n2−1 7→ Cn1×n2 as the Hankel matrix
obtained from x? whose first column and last row are filled by the
entries of x?, i.e.

Hx? =


x?0 x?1 x?2 ... x?n2−1

x?1 x?2 x?3 ... x?n2

...
...

... ...
...

x?n1−1 x?n1
x?n1+1 · · · x?n1+n2−2

 . (3)

From (1),Hx[t]? can be expressed as follows:

Hx[t]? = Vn1×rdiag({c[t]i}ri=1)V T
n2×r, (4)

where Vn1×r and Vn2×r are the partial matrices of V taking the
first n1 and n2 rows respectively and diag({c[t]i}ri=1) is the diago-
nal matrix whose i-th diagonal entry is c[t]i. From this decomposi-
tion, we know that Hx[t]? is a rank-r matrix. With partial observa-
tions of the signal x[t]?, it is suggested in [11, 13] that the missing
entries of x[t]? can be perfectly estimated by applying convex and
nonconvex optimization to complete the partially-observed Hankel
low-rank matrix.

2.2. Shift-Invariant Subspace Tracking

In this paper, we propose to track the subspace using up to L snap-
shots of partial observations by the following optimization problem
with respect toA ∈ Cn1×r ,B ∈ Cn2×r , andC ∈ Cr×L:

min
A,B,C

1

2

L∑
τ=1

λL−τ
(∥∥∥∥Ω[τ ]�

(
Hx[τ ]? −Adiag(c[τ ])BT

)∥∥∥∥2

F

+ µ1‖c[τ ]‖22
)

+
µ2

2

(
‖A‖2F + ‖B‖2F

)
, (5)

s.t. C = [c[1], c[2], ..., c[L]].

Here, λ is called the forgetting parameter, with 0 ≤ λ < 1, and
µ1 > 0, µ2 > 0 are regularization parameters. The matrix Ω[τ ] ∈
Rn1×n2 is an indicator matrix introduced for the projection onto the
sample space in the Hankel matrix form at time τ ; namely, if the l-th

entry of x[τ ]? is observed, then, the l-th skew diagonal of Ω[τ ] has
all the same weight values. It is noted that the missing data informa-
tion at time τ is incorporated by Ω[τ ] ∈ Rn1×n2 in (5). We call (5)
as Shift-Invariant Subspace Tracking (SIST) problem using the Han-
kel matrix enhancement in streaming data setting. Similar formula-
tions without the Hankel structures to (5) are introduced in [5, 14]
for tracking tensor low-rank data. The major difference between the
previous research in [5, 14] and ours is that we consider the struc-
tural information, i.e., Hankel structures, and seek to understand its
benefits in subspace tracking performance.

3. PROPOSED ALGORITHM

In order to solve SIST problem formulated in (5), we introduce the
alternating least-squares algorithm following the updating steps in
[4, 14]. The overall algorithm is stated in Algorithm 1. For updat-
ing c[t], we calculate the following optimization problem with fixed
A[t− 1] andB[t− 1]:

c[t] = argmin
c∈Cr

1

2

∥∥∥∥Ω[t]�
(
Hx[t]? −A[t− 1] diag(c)B[t− 1]T

)∥∥∥∥2

F

+ µ1‖c‖22 (6)

=

[ ∑
(l,w)∈Ω[t]

gl,w[t]gl,w[t]T + µ1I

]−1[ ∑
(l,w)∈Ω[t]

Hx[t]?l,wgl,w[t]

]
,

where gl,w[t] := al[t−1]�bw[t−1] ∈ Cr×1, al[t−1] ∈ Cr×1 is
the l-th row ofA[t− 1], bw[t− 1] is the w-th column ofB[t− 1]T .
Here, the notation g represents the complex conjugate of a vector g.

After updating c[t], we update the subspaceA[t] andB[t] based
on the Recursive Least-Squares (RLS) algorithm, which is the tech-
nique used in [4, 14]. Updating A is conducted with fixed c[t] and
B[t− 1]. Similarly,B is updated with fixed c[t] andA[t− 1].

For A[t], we solve the following optimization problem with
fixed c[t] andB[t− 1]:

minimize
A∈Cn1×r

µ2

2
‖A‖2F (7)

+
1

2

t∑
τ=1

(
λt−τ

∥∥∥∥Ω[τ ]� (Hx[τ ]? −Adiag(c[τ ])B[τ − 1]T )

∥∥∥∥2

F

)
.

Since the objective function can be decomposed over each row vec-
tor of A, let us consider the optimization problem with the l-th row
of A, denoted by al ∈ Cr×1. By denoting diag(c[τ ])bw[τ − 1] =
qw[τ ] ∈ Cr×1, where bw[τ−1] ∈ Cr×1 is thew-th row ofB[τ−1],
we have

al[t] =argmin
a∈Cr×1

1

2

t∑
τ=1

∑
w∈Ω[τ ]l,:

λt−τ
(
Hx[τ ]?l,w − aTqw[τ ]

)2

+
µ2

2
‖a‖22. (8)

where Ω[τ ]l,: represents the index set for column that has one in the
l-th row of Ω[τ ]. By applying the first-order optimality condition at
al[t], we have t∑

τ=1

( ∑
w∈Ω[τ ]l,:

λt−τgw[τ ]qw[τ ]T
)

+ µ2I

al[t]
=

t∑
τ=1

∑
w∈Ω[τ ]l,:

λt−τHx[τ ]?l,wgw[τ ]. (9)
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Algorithm 1: Shift-Invariant Subspace Tracking (SIST)
Input: λ, µ1, µ2, and PΩx

?[t], t = 1, ..., L
Output: Frequency support f

1 Initialize: Rl[0]−1← I ,Qw[0]−1← I , and randomA[0],
B[0],C[0]

2 for t = 1 to L do
3 Update c[t] via (6)
4 for l = 1 to n1 do
5 UpdateRl[t] and al[t] via (13) and (15)
6 end
7 for w = 1 to n2 do
8 UpdateQw[t] and bw[t] via (17) and (16)
9 end

10 Extract frequencies from the subspaceA[t] orB[t]

11 end

Defining

Rl[t] :=

t∑
τ=1

( ∑
w∈Ω[τ ]l,:

λt−τgw[τ ]qw[τ ]T
)

+ µ2I, (10)

sl[t] :=

t∑
τ=1

∑
w∈Ω[τ ]l,:

λt−τHx[τ ]?l,wgw[τ ], (11)

for (9), we have

Rl[t]a
l[t] = sl[t]. (12)

Note that bothR[t] and sl[t] can be updated recursively:

Rl[t] = λRl[t− 1] +
∑

w∈Ω[t]l,:

gw[t]qw[t]T + µ2(1− λ)I (13)

sl[t] = λsl[t− 1] +
∑

w∈Ω[t]l,:

Hx[t]?l,wgw[t]. (14)

It is easy to derive that updating al[t] can be conducted as

al[t] = al[t− 1]− µ2(1− λ)Rl[t]
−1al[t− 1] (15)

+
∑

w∈Ω[t]l,:

(
Hx[t]?l,w − qw[t]Tal[t− 1]

)
Rl[t]

−1gw[t].

Then, similarly to al[t], for updating the w-th row vector of
B[t], denoted by bw[t], we have

bw[t] = bw[t− 1]− µ2(1− λ)Qw[t]−1bw[t− 1] (16)

+
∑

l∈Ω[t]:,w

(
Hx[t]?l,w − βl[t]

T
bw[t− 1]

)
Qw[t]−1βl[t],

where βl[τ ] ∈ C1×r := (al[τ ]T diag(c[τ ]))T , Ω[t]:,w is intro-
duced for the index set of rows that have ones in the w-th column of
Ω[t], and

Qw[t] = λQw[t− 1] +
∑

l∈Ω[t]:,w

βl[t]βl[t]
T

+ µ2(1− λ)I. (17)

After updating c[t], A[t], and B[t], we can extract the loca-
tion of frequencies from well-known frequency extraction algorithm
called ESPRIT [15] by using the subspace matrixA[t] orB[t].

4. NUMERICAL EXPERIMENTS

We compare the proposed SIST algorithm to PETRELS [4] and
GROUSE [3] in the direction-of-arrival estimation problem where
the underlying modes are generated in two scenarios: (1) abrupt
changes and (2) fast yet smooth changes. In both scenarios, we set
the forgetting parameter λ for PETRELS and SIST to 0.98 and 0.1
respectively. Additionally, the parameters µ1 and µ2 in SIST are set
to 10−10 for both scenarios. These choices are tuned carefully to
provide desirable performance.

For the first scenario, we follow the numerical experiment set-
ting in [4, Section VI.B]. Fig. 1 (a) shows the ground truth mode
locations. For this experiment, we randomly observe 15% of the
signal dimension n = 256 at each snapshot. The total number of
snapshots L is 4000, and after every 1000 snapshots, one or more
signal sources suddenly change the locations, disappear from or en-
ter the scene. The magnitude of each signal source is chosen be-
tween 0 and 1. For measurements, we added random noise follow-
ing CN (0, 0.01). We set a postulated rank r to 10, which is twice
larger than the true rank, for all algorithms. Fig. 1 (b), (c) and (d)
show the estimated mode locations with respect to the streaming in-
dex of GROUSE, PETRELS and SIST respectively. As shown in
Fig. 1, both PETRELS and SIST track the subspace, yet SIST is
much faster than PETRELS in terms of tracking speed.

For the second scenario, where the mode locations change
smoothly yet fast, we generate three moving targets as shown
in Fig. 2 (a). The ground truth signal has the modes f =
[1 − 1/1000t, 1/1000t, 0.5 + sin(0.01t)/2] with the amplitude
[0.3, 0.5, 1] and 1000 numbers of snapshots. Therefore, at each time
t, the locations of modes are smoothly changing. For this experi-
ment, we randomly observe 15% of the signal dimension n = 256 at
each snapshot and added random noise to the measurements follow-
ing CN (0, 0.01). We set the postulated rank r to 10. Fig. 2 shows
the estimated mode locations with respect to the stream index. In
this scenario, GROUSE and PETRELS shown in Fig. 2 (b) and (c)
completely fail, while SIST shown in Fig. 2 (d) successfully tracks
the modes, significantly outperforming PETRELS and GROUSE in
terms of accuracy and speed.

5. CONCLUSIONS

In this paper, we study the subspace tracking problem using uniform
linear array in streaming data with partial observations. In order to
achieve the enhanced subspace tracking performance, we propose
the Shift-Invariant Subspace Tracking (SIST) algorithm based on
the Hankel matrix enhancement which is solved using the recursive
least-squares method. Our algorithm is evaluated in the direction-
of-arrival estimation problem, where it is demonstrated that our pro-
posed approach outperforms existing methods including GROUSE
[3] and PETRELS [4] with better agility and tracking speed. In con-
clusion, it is demonstrated that the performance of subspace tracking
algorithms can be significantly improved by properly incorporated
structural information of the subspace.
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