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ABSTRACT

Compressed sensing techniques, such as nuclear norm
minimization, can be used for structured low rank ap-
proximation, but it is well known that these methods lead
to suboptimal results. In this article we consider how
to improve this approach by use of so called “quadratic
envelopes”. The new feature is the extension to weighted
matrix spaces relying on tensors, and we show how this
can be used for improved accuracy of complex frequency
estimation methods.

Index Terms— Complex frequency estimation, com-
pressed sensing, convex envelopes.

1. INTRODUCTION

For concreteness we begin with the familiar Low Rank
Hankel approximation problem/Complex Frequency Es-
timation Problem. Let M, ,, be the set of m X n matri-
ces and let H be the linear subspace of Hankel matrices.
Given a sequence y we denote by H, the corresponding
Hankel matrix. We consider the classical problem of find-
ing a matrix X = H, of fixed (a priori known) rank K on
‘H that minimizes the distance ||y — d|| to some fixed mea-
surement d. The routine way of approaching this problem
via compressed sensing techniques is to solve

. 1
arg min /\|\X|\nuc+§||y—d”27 &)
X=H,

where A is a parameter which has to be tuned until the
right rank is found [1, 2]. Beyond the drawback with hav-
ing to tune A, it is well known within the community that
this approach leads to a bias [3].

On the other extreme, it is known that ADMM works
fairly well on non-convex problems, and hence one may
try to minimize e.g.

. 1
argmin taq, (X) + 5”2/ —d|)? )
X=H,

using ADMM, where ¢, is the indicator functional
of matrices with rank < K (i.e. tamy (X) equals O if
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Fig. 1. Illustration to the example in Section 6.

rank(X) < K and oo else). Successful performance in
comparison with (1), (as well as a number of competing
methods), was reported in [4]. Moreover, upon trading
the term ||y —d||? for || A(y) —d||?, where A is an interpo-
lation operator, it was shown that this method can handle
missing data and unequally spaced sampling. However,
there are no guarantees that this method will converge,
and for difficult problems we have indeed observed that
the corresponding algorithm may diverge.

To find a balance between these extremes, we have
in a series of articles developed a machinery to convexify
non-convex problems, which led to quadratic envelopes
and the so called Q~-transform [5, 6]. We introduce this
in a general framework, since everything in this paper ap-
plies just as well if # is any linear subspace of M,,,, and
y — H, is a parametrization of this subspace. Moreover
the functional ¢ o, can be swapped for many other penal-
ties, such as rank(X), or even any general functional f
on some Hilbert space V. We have chosen to focus on the
Hankel matrix/frequency estimation problem mainly for
concreteness.
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2. THE QUADRATIC ENVELOPE

Given any functional f on a Hilbert space, consider the set
S of all quadratic functionals that satisfy o— 7 || - —yl* <
f, where v > 0 is a parameter. The Q--transform is
defined as

Q,(N@)= sup {a—Jlle—y|* s}
aeR,yeV

It is designed such that Q- (f)(x) + Z||z||* is the Ls.c.
convex envelope of f(z) 4+ Z||z||>. The transform has a
number of desirable features, we refer to [5, 6] for details
and figures. Most notably O~ (f) is continuous, satisfies
0 < 9(f) < f and it often happens that Q. (f)(z) =
f(z), which makes O~ (f) suitable as a regularizer. Also,
for unconstrained minimization problems of the type

argmin f(z) + %HA(x) —d)’

it is shown in [6] that regularizing with Q-, i.e. swapping
f for Q- (f) has the very nice property that global minima
coincide, as long as v > || A||>. See [7] for applications
sparse (vector)-estimation.

3. SLRA AND 9,

Let c be a convex functional on V incorporating prior in-
formation known about the problem in question, and sup-
pose we wish to minimize

argmin f(z) + %fodHQJrc(:c). 3)
x
For concrete examples of this form we refer e.g. to the
overview article [8], or Section 4 of [3] which contains
applications to structure from motion and system identifi-
cation. In particular, we can take c as the indicator func-
tion of some closed convex subset H of V, i.e. ¢ = 13, to
retrieve the problem (2).

We suppose now that (3) does not have a closed form
solution, and consider replacing it by

argmin O, (f)(x) + gl — d +c(x) )

to obtain a strongly convex problem (for v < 1, just con-
vex if v = 1). The key result about this regularization,
which is a modification of Theorem 5.1 in [6] (or Theo-
rem 3.1 of [5]), reads as follows;

Proposition 3.1. Let f be a [0, oo]-valued functional on a
separable Hilbert space V), and let c > 0 be a l.s.c. convex
function such that domf N domc # 0. Given v < 1,
the functional in (4) is strongly convex and supercoercive.
The solution is thus a unique point &, which solves (3)

whenever Q~(f)(&) = f(&).

Most noteworthy, by the design of the Q. -transform
it frequently happens that Q- (f)(z) = f(z), and this is
easy to check upon convergence, so one of the benefits
of the proposed method is that it often solves the non-
convex problem (3). The rationale behind replacing (3)
by (4) is pragmatical; since the latter is convex the so-
lution may be found using convex optimization routines.
This may seem ad hoc but we remind the reader that re-
placing e.g. rank(X) by the nuclear norm || X||. has had
a substantial impact, and that for these concrete cases the
modification Q. (f) is much closer to the original func-
tional f. The proposed framework is also more flexible,
since we can work e.g. with Q. (rank(X)) or Q~ (e, )
depending on whether we have a priori information about
the model order. We refer to [9] for more information on
Q. (¢tmy ) and to [5] for many other possible penalties f.
For a variety of “Hankel-type” subspaces used in multidi-
mensional frequency estimation, see [10].

4. Q,-TRANSFORMS IN WEIGHTED SPACES

It is sometimes desirable to work in weighted spaces. In
this section we show how this can be done for a par-
ticular class of weights. In order to find a framework
that works for both vectors and matrices we consider the
more general situation of tensor products. Given n =
(n1,...,n4) € N% we let M, denote the set of tensors
X = (xj)1<j<n where 1 < j < nmeansthat1 < j; < mn;
forall1 <i <d.

Given W € M, with positive entries, we let MY be
the Hilbert space obtained by introducing the norm

2 2
X[ = wjlay|*.
j

In the case W = 1, i.e. when W is equal to one com-
ponentwise, we will simply write M, as earlier, and
the corresponding norm is written ||X|| as opposed to
| X |lpgz- Suppose now that we are interested in comput-

ing Q. (f) in the weighted space M}, ,,, where f is such
that Q. (f) has an explicit expression in the standard
space M., ». To keep notation separate, we refer to the
former as Qw, (f). In general, this will only be possible
if W is a direct tensor, i.e. of the form

Wj = Wi,y -+ W, jg ®

where wq, . . ., wq sequences.

Let /W be the pointwise square root of W, define
S My — M, by (#(X)); = VIW;Xj and note that
this linear operator is isometric and bijective.

Proposition 4.1. Ler f be a [0, oo]-valued functional on
MY where W is an outer product as in (5). Then

Q. (X)) = Qy(f 0 F ) (F(X)).
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Fig. 2. Left; standard triangular weight. Right; corre-
sponding weight for (8), with n = 63.

Proof. Let Sw,, be the negative of the Moreau enve-
lope, ie. supy ey —f(X) — F[X — Y”I%AI.‘I’V' Then

Qw,~(f) = Sw+(Sw,+(f)) (see Example 1.44 in [11])
and

Swo()Y) = sup —f(X) = TIX =Y
XeMWV
= sup —f(#(IX) - L|s(X - )P
XemlV

=S,(fo (I (Y)).

The sought identity follows by applying this identity
twice. O

5. THE LOW RANK HANKEL PROBLEM

At the end of Section 1 we posed the problem (2) and
noted that [3] had investigated solving this by com-
puting its convex envelope. By the above theory we
know that the convex envelope can be expressed as
Q1 (bm )(X) + 3IX — Hallfy, ,. However, con-
vergence proofs for e.g. ADMM often require some sort
of strict convexity [12, 13], which we achieve if we lower
v = 1 slightly. We have also observed that this greatly
improves convergence rates, so henceforth we let v < 1
be a number near 1.

In order to minimize the corresponding functional,
one may use ADMM on the splitting

. 1
argmin  Qy (v )(X) + I1X — Hallix,, ,, + 12 (Y),
X=Y,YEH
(6)

which is guaranteed to converge e.g. by [13]. However,
this has the drawback that the term || X — Hg||y, ., gives
rise to the undesired triangular weight in Figure 2, left.
(The issue with the triangular weight is pertinent to many
Hankel based frequency estimation schemes, see e.g. [14,
15, 16, 17].) Moreover, since for ADMM we have to com-
pute an arg min y for the corresponding Lagrangian, it is

impossible to put any operator in front of X if we want a
closed form solution to the X -update step, which rules out
considering missing data or unequally spaced data. It is
therefore tempting to swap X for Y = H, in the middle
term, giving the problem

. 1
argmin Qy(uate)(X) + 5 |Hy — Hall, . ()

X=Hy

and the corresponding steps in ADMM are efficiently
computed, even if we e.g. introduce weights in the middle
term to get rid of the triangular weight (at the cost of
losing convexity).

However, it turns out that the ADMM scheme for (7)
can diverge, despite the problem being convex over the
subspace defined by X = H,, (but not in the full space).
This is rather surprising in the light of several recent con-
tributions showing that ADMM converges in many non-
convex settings [18]. However, these issues seem to cease
if one takes p sufficiently large, and therefore we will ex-
plore this option in the numerical section. The issue of
lacking convexity of (7) led to the introduction of the more
complicated functional

p q
O (et ) (X) + B 1X = 1, .+ 211, — Halls, ..,

see [17] where it was shown that this is convex if and only

if1/p+1/q < 2/~. The new ingredient for this article

is to consider minimization of the functional ¢ a, (X) +

1| X — Hal|}, over the set of Hankel matrices, where
it g — 1

Wi ; = usuy with u; = W By the above theory

the L.s.c. convex envelope is given by
1
Q1w ) (S (X)) + 5 |1 X — Hallyy

Inserting X = H, in the quadratic term gives

2n—1

|Hy — Hallyy = > wslys — s, ®)
j=1

where w; is depicted in Figure 2, right. This weight is
clearly much closer to a uniform flat weight than the one
arising from (7) (see also [16]).

6. NUMERICAL RESULTS

We have run extensive tests comparing minimization of
the functionals discussed earlier, as well as

Quos(iwe ) (# (X)) + S IIACX — Ho)l3, ©)

where A either is identity or an optional operator designed
so that |A(Hy — Ha)|3y = |ly — d||>, and W either

8219



Name ly —d|| | Conv.Rate | Rank
Q-weights 11.40 315 8
HC-weights | 11.67 429 8
Q-standard 11.96 86 8
H(C-standard | 11.96 86 8
ESPRIT 12.00 1 8
nuclear 13.18 iterx92 8

Table 1. Performance with SNR = 5 and K = 8. Tests
use a function d with 8 exponential functions plus noise
(noise level ||e|| = 12.5), see Figure 1. Second column
displays distance to input signal, interesting to note is that
most methods beat “ground truth” (i.e. 12.5). The third
column displays the amount of iterations for each method,
where iter is the number of times “nuclear” needs to be
repeated to find a suitable A.

equals 1 or the weight considered in the end of the previ-
ous section.

We share a few representative examples and some
general observations. A tempting way to obtain a more
flat weight in (7) is to consider rectangular matrices m #
n, but we saw no substantial improvement in estimation
accuracy, so this option is not demonstrated. We tried
all combinations of A and W in (9), and concluded that
W = 1, A = Id (labeled Q-standard) gives fastest
convergence and good accuracy, whereas letting both be
“weighted” (labeled Q-weights) gives best accuracy con-
sistently. We therefore display only these results along
with “hard cutting” (HC), i.e. running the same algorithm
without Qg.gs applied to ¢, , in which case the corre-
sponding proximal operator “cuts” the singular values af-
ter index K (c.f. eq. (2)). The results of one concrete test
are displayed in Table 1, the corresponding noisy function
and its approximation via Q-weighted is shown in Fig. 1.
The stopping criteria used was | X*+! — X*| < 10712
for two successive iterates, or £ = 2000.

In Table 1 we also display the result of using ES-
PRIT and nuclear norm A|| X ||nue = Al|o(X)|l1. A ma-
jor drawback of the latter is that one needs to run the al-
gorithm multiple times to find an appropriate value of A
which gives the desired rank, so this algorithm is in reality
far slower. We only display this method using the misfit
1||Hy — Hql|? (i.e. using the triangle weight from Figure
2) as opposed to the (flat-weight) £ ||y — d||* appearing in
(1). The reason is that this gives best results (in terms of
“flat-weight” misfit!) and far superior convergence rates.
The latter is symptomatic for all penalties (although less
pronounced), unclear to us why.

Fastest is of course ESPRIT, which is not iterative,
and based on Table 1 one may ask whether iterative meth-
ods are worthwhile at all. However, ESPRIT is inadequate

Name lly —d|| | Conv.Rate | Rank
Q-weights 23.23 288 5
HC-weights | 26.69 352 5
Q-standard 21.56 150 6
HC(C-standard | 23.72 diverges 5
ESPRIT 40.43 1 5
nuclear 26.71 iter+x236 5

Table 2. Same as before but X = 5.

to treat e.g. missing data, whereas the above algorithms
are readily modified to this setting, see [2, 4]. More-
over, we shall soon see that ESPRIT performs worse if
the model-order is poorly estimated.

It is interesting to note that Q-standard and HC-
standard finds exactly the same point (in accordance
with Proposition 3.1) whereas this is not the case for
the weighted versions, demonstrating the ability of Q-
transform based techniques to avoid local minima. More-
over, for more difficult scenarios, the HC-algorithms
sometimes do not converge at all, which also favors the
use of the Q~-transform.

Next we ran the same example but seeking rank 5,
see Table 2. Now all iterative methods outperform ES-
PRIT with good margin, and best is again O-weights.
Interesting to note is that Q—standard has a better mis-
fit but found the “wrong” rank. This can be corrected
by increasing ~y (at the cost of entering the non-convex
regime) which plays a similar role as A for the nuclear
norm. In fact, due to the simple structure of 1 o1, we have
Q4 (tmy) = 791 (tmy ). We reran the experiment with
v = 1.2, and then Q-standard diverges and finds the same
point as H C-standard, again underlining that Q. (f) of-
ten equals f. By “diverges” we mean that || X*T! — X*||
seems to converge to a non-zero number.

Name lly —d|| | Conv.Rate | Rank
Q-weights 11.65 588 8
HC-weights | 11.66 567 8
Q-standard 12.28 88 8
H(C-standard | 12.28 90 8
ESPRIT 12.96 1 8
nuclear 14.06 iterx236 8

Table 3. Same as Table 1 but averaged over 69 trials.

Finally we ran the same setup as in the first exam-
ple, but repeated 100 times. On 19 occasions the Q-
standard method got the wrong rank and on 12 occasions
the weighted versions (both) diverged, so we discarded
these and averaged the rest, see Table 3. As is plain to
see, the pattern from Table 1 is typical.
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