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ABSTRACT
We propose an algorithm to perform the low-rank Boolean
Canonical Polyadic Decomposition (BCPD) of a binary ten-
sor. The proposed approach is based on the AO-ADMM strat-
egy introduced in [1] and uses a post-nonlinear mixture model
for binary sources. We show that this new method is better
suited for low-rank approximation of binary tensors compared
to other similar methods. We also provide an easy-to-check
uniqueness condition for the BCPD. This is the first time that
such a condition is derived for Boolean decompositions.

Index Terms— binary tensor, Boolean canonical polyadic
decomposition, uniqueness, AO-ADMM

1. INTRODUCTION

Third-order binary tensors are three-way arrays with the
entries composed of 0’s and 1’s. They are often used to
capture ternary relationships, memberships or occurrences
of events, e.g., source IP - target IP - target port in network
traffic analysis, adjacency matrices of a dynamic graph over
time, predicate relations subject - object - verb in knowledge
base, etc. To reveal latent structures in these binary tensors,
the Boolean Canonical Polyadic Decomposition (BCPD) has
been introduced; it allows to decompose a binary-valued ten-
sor in a “logical sum” of rank-1 binary terms (sources) [2].
The BCPD is NP-hard and therefore suboptimal strategies
have been proposed to tackle this difficulty. For example,
in [3, 4] the formal concept analysis framework is used to
achieve the decomposition, while in [2], the BCPD is ob-
tained using an alternating approach based on the discrete
basis problem for binary matrices, introduced in [5].

All these approaches are based on greedy strategies, de-
signed to give optimal results in the case of exact decompo-
sitions and non-correlated sources. Their performance dete-
riorates rapidly in the presence of binary noise and therefore
they are not well suited for low-rank decompositions of bi-
nary tensors. In this paper we propose an approach based on
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a relaxation of the BCPD problem over the nonnegative real
orthant, coupled with a post-nonlinear model for the Boolean
mixture of binary sources. We show that our approach yields
very good results for low-rank approximation of binary ten-
sors in the presence of sources having overlapping support
(correlated sources). We also prove a sufficient condition for
the uniqueness of the BCPD based on relationships between
the support of the loading factors.

2. BOOLEAN CP DECOMPOSITION OF BINARY
TENSORS

Consider a three-way binary data array (tensor)X of size N×
M × P such that its elements Xnmp ∈ {0, 1} (with n =
1, . . . , N , m = 1, . . . ,M and p = 1, . . . , P ) can be expressed
as:

Xnmp =
K∨

k=1
(wnk ∧ hmk ∧ vpk), (1)

with wnk, hmk, vpk ∈ {0, 1}, and with “∧” and “∨” denoting
the “AND” and “OR” logical operators, respectively. Equa-
tion (1) expresses a third-order Boolean Canonical Polyadic
Decomposition (BCPD) of rank K . As wnk, hmk, vpk ∈
{0, 1}, the logical “AND” operator in (1) can be equiva-
lently replaced by the classical real numbers product, and

thus Xnmp =
K∨

k=1
wnkhmkvpk . By regrouping the el-

ements wnk, hmk and vpk on the columns of matrices
W = [w1 . . .wK ] (N ×K), H = [h1 . . .hK ] (M ×K) and
V = [v1 . . .vK ] (P ×K), respectively, the BCPD (1) can be
expressed as:

X =
K∨

k=1
(wk ◦ hk ◦ vk) = �W,H,V� , (2)

where “◦” denotes the vector outer product and where the log-
ical operation “∨” is performed element-wise. Thus, in order
to estimate the BCPD of X , one must solve the following in-
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verse problem:

{Ŵ, Ĥ, V̂} = arg min
W,H,V∈{0,1}

∥∥∥∥X − K∨
k=1

wk ◦ hk ◦ vk

∥∥∥∥
2

F

.

(3)
A classical way to perform the canonical polyadic decompo-
sition in the real-valued case is to alternatingly estimate the
three loading matrices using the three n-mode unfoldings of
X [6]. A similar strategy can be used in the Boolean case,
based on the three unfoldings hereafter:

X(1) = W � (V �H)T , (4)

X(2) = H � (V �W)T , (5)

X(3) = V � (H�W)T , (6)

where “�” denotes the Khatri-Rao product and “�” represents
the Boolean matrix product, i.e., the restriction of BCPD (2)
to second-order tensors (matrices).

3. UNIQUENESS

The existing uniqueness conditions for the CP decompo-
sition of real-valued tensors do not apply to the Boolean
case. Therefore, before introducing the proposed approach
for performing the BCPD, we analyze the uniqueness of this
Boolean tensor decomposition. In [7] we derived a nec-
essary and sufficient uniqueness condition for the Boolean
decomposition of binary matrices. An extension of this con-
dition to tensor case is possible but it does not have much
practical interest because it would be very difficult to check.
We give instead a sufficient condition for the uniqueness of
the decomposition (2), much more easy to evaluate in prac-
tice. To our knowledge, this is the first time that such a
condition is provided. We start by proving a sufficient con-
dition for the Boolean decomposition of the binary matrix

X = W �H =
K∨

k=1
X(k) =

K∨
k=1

wkh
T
k .

Theorem 3.1 (Partial uniqueness of X = W � H). If

supp1(w�) �⊆
K∪
k �=�

supp(wk) then the �th column of H, i.e, h�

can be uniquely estimated from X. (A similar condition can
be proven for the uniqueness of w�).

Proof. Suppose that h� can not be uniquely estimated from
X, i.e. it ∃ X̄(�) = w�h̄

T
� �= X(�) = w�h

T
� such that X =

∨
k �=�

wkh
T
k ∨w�h

T
� = ∨

k �=�
wkh

T
k ∨w�h̄

T
� . This is equivalent to

supp(X) =
K∪

k=1
supp(wkh

T
k ) = ∪

k �=�
supp(wkh

T
k )∪supp(w�h

T
� )

= ∪
k �=�

supp(wkh
T
k )∪supp(w�h̄

T
� ). Let us suppose, without

loss of generality, that h̄� = h�∨h �= h�. Then, supp(X) =
∪

k �=�
supp(wkh

T
k ) ∪ supp(w�(h�∨h)T ) = ∪

k �=�
supp(wkh

T
k )∪

1We define the support of a vector x as supp(x) = {i,xi �= 0} and the
support of matrix X as supp(X) = {(i, j),Xij �= 0}.

supp(w�h
T
� ) ∪ supp(w�h

T ). As supp(h) �⊆ supp(h�), it
results that supp(w�h

T ) ⊆ ∪
k �=�

supp(wkh
T
k )⇔ supp(w�) ⊆

∪
k �=�

supp(wk) and supp(h) ⊆ ∪
k �=�

supp(hk), which ends the

proof.

By applying theorem 3.1 to the unfoldingsX(1),X(2) and
X(3) of X , the following partial uniqueness condition for
BCPD can be proven quite straightforwardly (for space rea-
sons the proof will not be detailed in this version of the paper).

Theorem 3.2 (Partial uniqueness of the BCPD of X ). The
�th rank-1 term X (�) = w� ◦ h� ◦ v� in the BCPD (2) can be
uniquely estimated from X if

supp(w�) �⊆
K∪
k �=�

supp(wk) and supp(h�) �⊆
K∪
k �=�

supp(hk)

or

supp(w�) �⊆
K∪
k �=�

supp(wk) and supp(v�) �⊆
K∪
k �=�

supp(vk)

or

supp(h�) �⊆
K∪
k �=�

supp(hk) and supp(v�) �⊆
K∪
k �=�

supp(vk).

If theorem 3.2 is satisfied for all values of � = 1, . . . ,K ,
we say that BPCD is fully unique or simply, unique.

4. PROPOSED APPROACH

We base our algorithm for solving the BCPD problem (3) on
a post-nonlinear mixture model approach, similar to the one
that we proposed in [7] for the matrix case. Instead of solving
directly (3), we solve a relaxed version of it:

{Ŵ, Ĥ, V̂} = arg min
W,H,V∈{0,1}

∥∥∥∥∥X − Φ

(
K∑

k=1

wk ◦ hk ◦ vk

)∥∥∥∥∥
2

F

,

(7)
where Φ(x) is the sigmoid function in Fig.1, applied element-
wise.
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Fig. 1: Sigmoid function Φ(x) = 1
1+e−γ(x−0.5)

In this paper we develop an algorithm for solving (7) in-
spired from the Alternating Optimization - Alternating Di-
rection Method of Multipliers (AO-ADMM) introduced in [1].
The proposed approach can be summarized as follows:

8213



Repeat

min
W,W̄

1

2

∥∥∥X(1)−Φ
(
W̄ (V �H)

T
)∥∥∥2

F
+
λ

2
‖W−W∗W‖2F

subject to W = W̄

min
H, H̄

1

2

∥∥∥X(2)− Φ
(
H̄ (V�W)

T
)∥∥∥2

F
+
λ

2
‖H−H ∗H‖2F

subject to H = H̄

min
V, V̄

1

2

∥∥∥X(3)− Φ
(
V̄ (H�W)

T
)∥∥∥2

F
+
λ

2
‖V −V ∗V‖2F

subject to V = V̄

until convergence (8)

where “∗” denotes the matrix Hadamard (element-wise) prod-
uct. The second term in the expressions to minimize is used to
constrain the entries of W,H,W to binarity, as explained in
[7]. Using the results of [1], update rules can be obtained for
the three minimization problems. For example, for the update
of W, the following expressions are obtained:

W̄← argmin
W̄

1

2

∥∥∥X(1) − Φ
(
W̄ (V �H)

T
)∥∥∥2

F
+

ρ

2

∥∥W − W̄ +A
∥∥2
F

W← argmin
W

λ

2
‖W −W ∗W‖2F +

ρ

2

∥∥W − W̄ +A
∥∥2
F

A← A+W − W̄,

with ρ a regularization parameter. The two minimization
problems below are solved by gradient descent steps. The
resulting algorithm, that we called Boolean Tensor - ADMM
(BT-ADMM), is summarized in Algorithm 1. Ω and Ψ are
two matrix element-wise functions, that associate to each el-
ement Xij of a matrix X, the values γe−γ·(Xij−0.5)

(
1+e−γ·(Xij−0.5)

)2 and

γe−γ·(Xij−0.5)
(
1+e−γ·(Xij−0.5)

)3 , respectively. For the choice of the hyper-

paramters of the algorithm, an heuristic that works in most
cases is the following: at iteration k choose the descent steps
α(k) proportional to k−1/2, γ close to 1, λ(k) = 10λ(k−1)

(with λ(0) = 10) and ρ = 50λ(0).

5. RESULTS

In this section we illustrate the proposed approach in numeri-
cal simulations and compare it to similar methods of the state-
of-the-art.

A first experiment illustrates the uniqueness condition for
the BCPD. Figure 2 shows two rank-3 BCPD’s of 10× 7× 5
binary tensors (gray pixels symbolize the 1’s). The first row
of each figure represents the simulated data and the second

Algorithm 1 : BT-ADMM

1: Inputs: X , K , Nbiter, Nbinternal, ρ, λ, γ, ε, Nbgrad1,
Nbgrad2

2: Outputs: W, H, V

3: STEP 1: Initialization
W← rand(N,K), H← rand(M,K), V← rand(P,K)
W̄← rand(N,K), H̄← rand(M,K), V̄← rand(P,K)
A← zeros(N,K), B←zeros(M,K), C←zeros(P,K)

4: STEP 2: Updates
5: for t = 1 : Nbiter do
6: Update of W̄ and W
7: for t1 = 1 : Nbinternal do
8: for t11 = 1 : Nbgrad1 do
9: W̄← W̄−αW̄(−γ(X(1) ∗Ω(W̄(V�H)T ))(V�

H)+γΨ(W̄(V�H)T )(V�H)−ρ(W−W̄+A))

10: end for
11: for t12 = 1 : Nbgrad2 do
12: W ← W − αW(λ(W − 3W2 + 2W3) + ρ(W −

W̄ +A))

13: end for
14: A = A+W − W̄
15: end for
16: Update of H̄ and H
17: for t2 = 1 : Nbinternal do
18: for t21 = 1 : Nbgrad1 do
19: H̄ ← H̄ − αH̄(−γ(X(2) ∗ Ω(H̄(V �W)T ))(V �

W)+γΨ(H̄(V�W)T )(V�W)−ρ(H−H̄+B))

20: end for
21: for t22 = 1 : Nbgrad2 do
22: H← H−αH(λ(H−3H2+2H3)+ρ(H−H̄+B))

23: end for
24: B = B+H− H̄
25: end for
26: Update of V̄ and V
27: for t3 = 1 : Nbinternal do
28: for t31 = 1 : Nbgrad1 do
29: V̄ ← V̄ − αV̄(−γ(X(3) ∗ Ω(V̄(H �W)T ))(H �

W)+γΨ(V̄(H�W)T )(H�W)−ρ(V−V̄+C))

30: end for
31: for t32 = 1 : Nbgrad2 do
32: V← V−αV(λ(V−3V2+2V3)+ρ(V−V̄+C))

33: end for
34: C = C+V − V̄
35: end for

36: STEP 3: Stop criterion

37: X̂ =
K∨

k=1
wk ◦ hk ◦ vk

38: if ‖X −X̂‖2+∑

i,k

(
W2

ik −Wik

)2
+
∑

j,k

(
H2

jk −Hjk

)2
+

∑

�,k

(
V2

�k −V�k

)2
< ε then

39: break
40: end if
41: end for
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row, the estimated BCPD. One can see that for Fig.2 (a) the
uniqueness conditions of theorem 3.2 are verified for all 3
sources, while for Fig.2 (b) the partial uniqueness condition
is not satisfied for the second source. Thus, for the second
configuration, our algorithm yielded another decomposition
that reproduces exactly the BCP model X .
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Fig. 2: Unique decomposition (a) and non-unique decomposition
(b) of X

The second experiment compares the performance of
the proposed BT-ADMM algorithm to two other state-of-
the-art approaches, the BCP-ALS of [2] and the T-FC of
[4]. We plotted the estimation error for the loading matrices:

ErrorW,H,V = 1
3

(‖W−Ŵ‖2
F

NK +
‖H−Ĥ‖2

F

MK +
‖V−V̂‖2

F

PK

)
and

the reconstruction error for X : ErrorX =
‖X(1)−X̂(1)‖2

F

NMP
versus the noise rate. For these simulations, we considered
additive XOR noise generated according to a Bernoulli dis-
tribution of parameter b. The plotted points were averaged
over 50 runs. Two scenarios were considered: in the first
scenario (Fig.3) the sources were randomly simulated ac-

cording to a Bernoulli distribution with parameter p = 0.3,
i.e., the sources have low correlation (their supports are ap-
proximately disjoint). In the second scenario (Fig. 4) we
chose p = 0.6 in order to generate highly correlated sources.
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Fig. 3: (a) Reconstruction error for X and (b) estimation error for
W, HV vs. additive XOR noise rate b (N = 20, M = 30, P = 10,
K = 3, ρ = 109) for p = 0.3
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Fig. 4: (a) Reconstruction error for X and (b) estimation error for
W, HV vs. additive XOR noise rate b (N = 20, M = 30, P = 10,
K = 3, ρ = 109) for p = 0.6

One can observe that for noise rates b inferior to 0.3 our
algorithm yields better results than the competitor methods,
which makes it an interesting tool for low-rank binary tensor
approximation. For the values of p > 0.3 none of the three
methods give good results because the XOR noise rate is high
enough to completely destroy the low-rank structure of the
data.

6. CONCLUSIONS

In this paper we introduced a new method for the Boolean
canonical polyadic decomposition (BCPD) of binary-valued
tensors based, on a post-nonlinear mixture model and an al-
ternating ADMM approach. We illustrated in numerical sim-
ulations that our method outperforms similar state-of-the-art
methods in the presence of XOR binary noise, which makes
it well-adapted for low-rank binary tensor approximation. We
also provided an easy-to-check sufficient condition for the
uniqueness of BCPD; this is the first time that such a con-
dition is derived.
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