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ABSTRACT

Applications of signal processing and control are classically
model-based, involving a two-step procedure for modeling
and design: first a model is built from given data, and sec-
ond, the estimated model is used for filtering, estimation, or
control. Both steps typically involve optimization problems,
but the combination of both is not necessarily optimal, and the
modeling step often ignores the ultimate design objective. Re-
cently, data-driven alternatives are receiving attention, which
employ a direct approach combining the modeling and design
into a single step. In earlier work, it was shown that data-
driven signal processing problems can often be rephrased as
missing data completion problems, where the signal of inter-
est is part of an incomplete low-rank mosaic Hankel struc-
tured matrix. In this paper, we consider the exact data case
and the problem of simulating from a given input, an output
trajectory of the unknown data generating system. Our find-
ings suggest that, when using an adequate rescaling of the
given data, the exact data-driven simulation problem can be
solved by replacing the original structured low-rank matrix
completion problem by a convex optimization problem, using
the nuclear norm heuristic.

Index Terms— data-driven signal processing, low-rank
matrix completion, mosaic Hankel matrix, nuclear norm, con-
vex optimization

1. INTRODUCTION

1.1. Context and motivation

Signal processing and control methods are classically model-
based, and proceed in two steps, namely as a ‘modeling’ step
followed by a ‘design’ step. First a mathematical model is
built that explains as well as possible the measured (noisy)
signals, exploiting prior information about the data generating
system (and possibly noise). Second, the identified model is
used for solving a design problem (e.g., Kalman filter).

Both steps typically involve a mathematical optimiza-
tion problem: In the modeling step, model parameters are
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optimized as to describe as accurately as possible the mea-
sured data. Then the design problem is solved optimally with
some purpose in mind, starting from the previously identified
model. While each of the steps may separately lead to optimal
solutions, the combination of both is no longer necessarily
optimal—the identification step does not take into account
the subsequent use of the identified model for design.

To account for the above issues, the data-driven paradigm
combines the modeling and design steps into a single prob-
lem [1]. The data-generating system is assumed linear and
time-invariant, admitting a description using low-rank Han-
kel matrices [2]. In this way, a variety of signal processing
and control problems can be reduced to instances of mosaic
Hankel low-rank approximation and/or completion tasks. In
this paper, we focus on the data-driven approach for the sim-
ulation of a system to a given input signal, on the basis of
exact measurements of past data. Following [3, 1], the simu-
lation task is formulated as a low-rank block-Hankel comple-
tion problem, which we will solve using a convex relaxation
heuristic. Our simulation results suggest that, when using an
adequate rescaling of the given data, the exact data-driven
simulation problem can be solved by replacing the original
structured low-rank matrix completion problem by a convex
optimization problem, using the nuclear norm heuristic.

1.2. Related work

Low-rank matrix completion, or the recovery of missing en-
tries of low-rank matrices has applications in several scientific
and engineering problems, e.g., recommender systems [4],
genetic prediction [5], and image processing [6], among oth-
ers. Generally, the matrix completion problem is NP-hard
and no efficient algorithms are known [7, 8]. However, by
using the nuclear norm heuristic, introduced in the work of
Fazel [9, 10] in the context of rank minimization, the problem
is relaxed to a convex one, and can be solved efficiently using
semi-definite programming.

The problem of (Hankel) structured low-rank approxima-
tion (as opposed to completion) by nuclear norm minimiza-
tion was studied in [11, 12, 13, 14] and the system identifi-
cation problem with missing data was studied in [15]. While
the nuclear norm heuristic for low-rank matrix completion has
been analyzed for unstructured matrices [16, 8], for (Hankel)
structured matrices the problem is only recently receiving at-
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tention [17, 18, 19, 20], in particular for sums of exponen-
tials signals. The works of [18, 20] establish that the nuclear
norm heuristic retrieves the original rank minimization solu-
tion, provided that a stability criterion is met.

1.3. Organization of the paper

This paper is organized as follows. Section 2 introduces the
preliminaries and notation used throughout the paper. Sec-
tion 3 discusses how the simulation problem can be phrased
as a low-rank mosaic Hankel matrix completion problem, for
which we consider a convex relaxation using the nuclear norm
heuristic. Section 4 contains numerical experiments illustrat-
ing the use of the nuclear norm completion. Section 5 draws
the conclusions of this work and points out open problems.

2. PRELIMINARIES AND NOTATION

2.1. Linear dynamical systems

Willems’ behavioral system theory [21] defines a system B as
the set of its admissible trajectories w. A trajectory w of a
discrete-time q-variate system B (in shorthand notation ‘w ∈
B’) is a sequence w = (w(1), . . . , w(T ) ), with w(t) ∈ Rq

for t = 1, . . . , T . In this paper we consider the class of q-
variate linear time-invariant (LTI) systems Lq . An LTI system
B ∈ Lq with m inputs and p outputs (with q = p + m) has a
kernel representation

B =
{
w | R0w(t) + · · ·+R`w(t+ `) = 0, for t ≥ 1

}
, (1)

where R =
[
R0 R1 . . . R`

]
with Ri ∈ Rp×q is a ker-

nel parameter that specifies the system. This formulation can
be viewed as a difference equation describing the admissible
trajectories w ∈ B. The minimal value for ` for which (1)
holds, is an invariant of the system B and is called the lag.

2.2. The block-Hankel matrix

A central tool in the remainder of the paper is the block-
Hankel matrix, which captures into the language of linear al-
gebra, the linear time-invariance of B. The block-Hankel ma-
trix HL(w), with L < T block rows, built from a trajectory
w = (w(1), . . . , w(T ) ), is defined as

HL(w) =


w(1) w(2) · · · w(T − L+ 1)
w(2) w(3) · · · w(T − L+ 2)

...
...

. . .
...

w(L) w(L+ 1) · · · w(T )

 ,
(2)

having size qL× T − L+ 1.
For a trajectory w ∈ B, the block-Hankel matrix HL(w)

with L ≥ `+ 1 is (row) rank-deficient, since RH`+1(w) = 0.
More precisely, the rank of the block-Hankel matrix HL(w)
is [2]

rankHL(w) ≤ mL+ p`, for L ≥ `+ 1. (3)

2.3. On the initial conditions

A trajectoryw ∈ B admits a partitoning into inputs u and out-
puts y. Let w = (u, y) denote such a partitioning. The output
sequence y = ( y(1), · · · , y(T ) ) is uniquely determined by
the input sequence u = (u(1), · · · , u(T ) ) (free variables)
and initial conditions wi (‘i’ for initial conditions), with

wi = (wi(−`+ 1), wi(−`+ 2), . . . , wi(−1), wi(0) ) , (4)

such that wi ∧w ∈ B, with ‘∧’ denoting the concatenation of
trajectories. Remark that if we assume that the initial condi-
tions are zero, i.e., wi ≡ 0, the specification of initial condi-
tions is done by prepending the trajectory w with ` zeros.

3. METHOD

3.1. Problem formulation

The simulation of a system for a given input signal can be
stated as follows. Given a system B ∈ Lq , an input us, and
initial conditions wi as in (4), find the output ys such that
wi ∧ ws = wi ∧ (us, ys) ∈ B. This is a basic problem in
system theory and is studied in various formulations.

In data-driven simulation, the system B is defined implic-
itly by a given trajectory wd = (wd(1), . . . , wd(Td) ) ∈ B
(‘d’ for data). In this context, the simulation of the out-
put ys = ( ys(1), . . . , ys(Ts) ) for a given input us =
(us(1), . . . , us(Ts) ) (‘s’ for simulation) is done without
first identifying the system B. We assume that the input ud of
the given trajectory wd = (ud, yd) is persistently exciting, so
wd completely specifies the system B [22]. The data-driven
simulation problem can then formally be stated as follows.

Problem 1 (Exact data-driven simulation).
Given a trajectory wd = (ud, yd) ∈ B ∈ Lq , an input us, and
initial conditions wi, find the output ys, such that wi ∧ ws =
wi ∧ (us, ys) ∈ B.

3.2. Data-driven simulation as matrix completion

The rank-deficiency of the Hankel matrix HL(w), for L ≥
`+1, is closely related to the kernel representation of the sys-
tem B and its interpretation in terms of difference equations.
The mosaic Hankel matrix

[
HL(w′) HL(w′′)

]
built from

two different trajectories w′, w′′ ∈ B has the same rank as
HL(w), since w′ and w′′ satisfy the same difference equa-
tions, so rank

[
HL(w′) HL(w′′)

]
≤ mL+ p`.

This observation is crucial for formulating the data-driven
simulation problem as a matrix completion problem: Con-
sider the mosaic Hankel matrix

[
HL(wd) HL(ws)

]
,

where the leftmost Hankel block HL(wd) contains the given
trajectory wd, and the rightmost Hankel block HL(ws) con-
tains the simulation trajectory ws, which is only partially
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known—the inputs us are given, but the outputs ys are un-
known. Hence, the unknown trajectory ys should be deter-
mined such that

rank
[
HL(wd) HL(ws)

]
≤ mL+ p`, for L ≥ `+ 1,

(5)
implying that both trajectories belong to the same system B.

Remark that again we need to specify initial conditions to
uniquely determine the simulation output ys. For simplicity,
we will henceforth assume that the simulations start from zero
initial conditions wi ≡ 0. In this case, the specification of
initial conditions is done by prepending the to-be-simulated
trajectory ws with L−1 zeros. If we denote by w′s = wi∧ws

the simulation trajectory with prepended zeros, we thus have

u′s = (0, . . . , 0︸ ︷︷ ︸
L−1 zeros

, us(1), . . . , us(Ts)︸ ︷︷ ︸
simulation input

), and

y′s = (0, . . . , 0︸ ︷︷ ︸
L−1 zeros

, ys(1), . . . , ys(Ts)︸ ︷︷ ︸
simulation output

).
(6)

The data-driven simulation problem can then be phrased as
the following block-Hankel matrix completion problem.

Problem 2 (Data-driven simulation via Hankel completion).
Given a trajectory wd = (ud, yd) ∈ B ∈ Lq , an input us,
and zero initial conditions wi ≡ 0, find the output ys from the
following minimization problem.

minimize
ys

rank
[
HL(wd) HL(w′s)

]
, (7)

where w′s = (u′s, y
′
s) is defined in (6).

3.3. Relaxing the structured matrix completion problem

The rank minimization of a (block-Hankel) matrix is in gen-
eral an NP-hard problem for which no efficient solutions are
known. Here we consider the nuclear norm minimization,
which is a convex relaxation of the matrix rank minimization.
The nuclear norm of a matrix X , denoted by ‖X‖?, is the
sum of its singular values σi(X) , i.e., ‖X‖? =

∑
i σi(X),

and serves as a convex proxy for the rank function. The ap-
peal of nuclear norm minimization is that it can be reduced
to a semi-definite programming problem and solved globally
and efficiently. The data-driven simulation problem can hence
be relaxed using the nuclear norm heuristic as follows.

Problem 3 (Data-driven simulation via nuclear norm mini-
mization).
Given a trajectory wd ∈ B ∈ Lq and an input us,
find the output ys from the following minimization problem.

minimize
ys

∥∥[ HL(wd) HL(w′s)
]∥∥

?
, (8)

where w′s = (u′s, y
′
s) is defined in (6).

3.4. On the choice of the number L of block rows

So far we have not commented on the number L of block
rows of the block-Hankel matrix

[
HL(wd) HL(w′s)

]
, ex-

cept that rank-deficiency occurs as of L ≥ ` + 1. Since the
lag ` is not known a priori, an appropriate choice for L is not
straightforward. The choice of L should firstly ensure that
L ≥ ` + 1 for the rank-deficiency of the block-Hankel ma-
trix. Further, the choice of L determines the dimensions of
the block-Hankel matrix, and hence has an influence on the
subsequent (nuclear norm) minimization problem. As a re-
sult, the choice of L has an effect on the performance of the
nuclear norm minimization result. In Section 4 we will illus-
trate, by means of numerical experiments, the influence of the
choice of L on the simulation results.

4. NUMERICAL EXPERIMENTS

The numerical experiments were done using CVX, a MAT-
LAB package for specifying and solving convex optimization
problems [23, 24], on an average laptop (2.5 GHz dual core
processor and 8 GB RAM).

4.1. The effect of rescaling the data wd

We generated a random SISO (m = p = 1) LTI system using
MATLAB’s drss function of order 10 (i.e., ` = 10), and
generated a standard normal zero-mean white Gaussian input
sequence ud of length Td = 50 and the corresponding output
yd. The simulation input us was also generated as a standard
normal zero-mean white Gaussian sequence of length Ts =
30, and the true simulation output is denoted by ȳs. Assuming
` is known, we set L = ` + 1, and replaced in Problem 3 the
trajectory wd = (ud, yd) by γwd. We investigated the results
for values of γ in the interval

[
10−3, 103

]
.

Notice that rescaling the trajectory wd does not alter the
rank-deficiency of the (block-)Hankel matrix. Since we as-
sume that the data is exact, wd ∈ B implies that γwd ∈ B,
for all γ. In this setup us is not rescaled, so the simulated
output ys obtained by nuclear norm minimization (Problem 3
with rescaled wd) returns the simulation output in the original
scale, and can immediately be compared to ȳs.

Figure 1 contains a typical result of this analysis, where
the parameter γ is varied from 10−3 to 103 and we show the
relative simulation error ‖ys‖/‖ȳs‖ with ȳs the true simula-
tion output. For γ � 1, the simulation result is (close to)
a zero sequence, resulting in a relative error of one. Around
γ ≈ 1, a transition occurs from large relative error to small
relative error (the specific value at which this occurs varies
from one setup to the other). For γ � 1, the nuclear norm
minimization is able to perfectly recover the simulation out-
put, resulting in a relative error of zero. We observed the same
(qualitative) result on all tested systems, over a wide range of
data lengths Td and Ts, data generating system lags `. The
average runtime of CVX was 2.08 sec.
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Fig. 1. The top plot shows that rescaling the given trajec-
tory wd by a factor γ results in a relative simulation error that
ranges from one down to zero. The bottom plot shows the nu-
clear norm of the completed (rescaled) Hankel matrix, which
indicates when the transition to exact reconstruction occurs—
as a reference, the nuclear norm of the true underlying (un-
scaled) Hankel matrix is shown.

4.2. The number L of block rows

If the system lag ` is not known in advance, an appropriate
choice for L should be made. We consider the same simula-
tion setup as in Section 4.1, but vary the number L of block
rows. In Figure 2, we show how the choice of L influences
the results. For L < ` + 1, we observe that the data-driven
simulation does not attain zero error, while for L ≥ `+ 1 the
transition to zero error is observed—typically, an ‘optimal’
value is observed for which the transition is sharpest, around
the value for L at which HL(wd) is square, i.e., L = 17.
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Fig. 2. The number L of block rows of the block-Hankel
matrix has an influence on the simulation results. For L < `+
1 (red), the simulation error does not reach zero. ForL ≥ `+1
(blue), the simulation error reaches zero for sufficiently large
values of γ, and our experiments suggest there is an optimal
value for which the transition is sharpest (green).

4.3. Exploring the noisy case

We consider the setup of Section 4.1 with additive zero-mean
white Gaussian (measurement) noise on wd = w̄d + w̃d with
w̄d ∈ B denoting the true trajectory, and w̃d is a standard
normal zero-mean white Gaussian noise sequence with SNR
of 30 dB on input and output measurements.

We compare the method of the current paper to a model-
based approach. The model-based approach proceeds as fol-
lows. Assuming that the system lag ` is known, we construct
the block-Hankel matrix H`+1(wd), from which a numerical
basis for the left null space (of dimension one) is computed
by the singular value decomposition. The (approximate) left
null space is then viewed, as in (1), as the difference equa-
tions governing the system, and used to generate the output
sequence ys for the simulation input sequence us.

For the data-driven approach, we set L = ` + 1, and let
γ = 1000 to ensure a sufficiently large rescaling of wd. We
then generated 100 Monte Carlo experiments with randomly
generated systems of order ` = 10 and random realizations of
the input and output data sequences.

The results suggest that data-driven simulation using a nu-
clear norm heuristic is a competitive alternative for the model-
based method. In 52 out of 100 experiments, the data-driven
approach resulted in the lowest simulation error. Obviously,
the model-based approach performs poorly when a limited
number of (estimation) data points is available. However, it
should also be remarked that this is a very naive application
of the data-driven method, where ideally also the noisy data
wd should be corrected to restore rank-deficiency.

5. DISCUSSION AND PERSPECTIVES

We found that, in the exact case, a rescaling of the given
trajectory wd by a sufficiently large factor γ always allows
for an exact recovery using the nuclear norm minimization.
We investigated the effect of the number L of block rows of
the Hankel matrix, suggesting an optimal value at around the
point where the matrix HL(wd) is square. Finally, we ex-
plored a naive extension to a noisy measurement setup, where
again a suitable scaling of the data led to promising results.

We are currently investigating how the value of γ at which
the transition occurs, is related to the ratio between nuclear
norm of the matrix completion versus nuclear norm of the un-
derlying block-Hankel matrix. Future work is concerned with
deriving a theoretical basis explaining the observed behavior,
and a thorough analysis of the noisy setup, where both wd is
corrected and the missing elements in ws are computed.
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