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ABSTRACT

As error/failure rates in supercomputers are projected to grow,
computationally intensive scientific applications that lever-
age large-scale parallelization will suffer from the increased
error rate. In this work, we apply “coded computing” to
protein folding simulations in an error-prone environment.
We implemented the fast Fourier Poisson method for solv-
ing electrostatic equations at each time step of the simulation,
and we utilize coded FFT algorithm to protect the compute-
intensive FFT algorithm from soft errors. Through experi-
ments on Amazon AWS, we showed that coded protein fold-
ing can be implemented with less than 10% overhead in total
simulation time, and also showed that coded computing ap-
proach is faster than classical checkpointing method when the
error rate is high.

Index Terms— Molecular Dynamics, Protein Folding,
Bioinformatics, Coded Computing, Fast Fourier Transform

1. INTRODUCTION

Recently, there has been growing interest in “coded comput-
ing” [1–7], in which the core idea is to add redundant comput-
ing nodes in a distributed computing system to protect against
faulty or straggling nodes. However, the application of coded
computing has been mostly limited to machine learning algo-
rithms on cloud systems. In this work, we propose to apply
coded computing for scientific computing, specifically pro-
tein folding simulations. Molecular dynamics (MD) simula-
tions have been a valuable tool to understand the dynamics of
protein folding by providing high spatial and temporal reso-
lution to complement experimental studies [8, 9]. However,
simulating protein molecules is challenging due to the sheer
size of proteins; they are made up of hundreds of amino acids
each containing tens of atoms, and titin, the largest protein in
our body, consists of more than 30,000 amino acids [10]. Ac-
curate all-atom MD simulations of proteins became possible
only recently due to the advances in parallel computing on
high-performance supercomputers [11–14].

While the increased parallelism in a supercomputer en-
abled large-scale MD simulations, it also reduced the mean
time between failures (MTBF) simply because there are more
components that can fail [15–17]. To mitigate this issue,
algorithmic-based fault tolerance (ABFT) has been proposed

(a) Alanine dipeptide (b) Folded short peptide

Fig. 1. Proteins used for simulation (solvent excluded)

in high-performance computing (HPC) literature [18–21]; the
idea resembles coded computing – adding redundant compute
nodes by encoding the input data. Such algorithmic-specific
fault tolerance techniques can be attractive solutions for fu-
ture supercomputers for several reasons. First, the traditional
checkpoint/restart technique is not scalable since checkpoints
are stored at a shared stable memory, and thousands of nodes
accessing the shared memory would be extremely slow. Sec-
ondly, we expect to see more frequent errors, e.g., every few
minutes, and when there is an error, the recovery using ABFT
(or coded computing) techniques is orders of magnitude faster
than checkpoint/restart methods. This is because there is no
need to roll back and recompute the corrupted output using
ABFT techniques; we can correct the corrupted output and
roll forward. Lastly, it was suggested that increased fault tol-
erance using ABFT in conjunction with undervolting can be
a more energy-efficient solution for exascale computers [22].

In this work, we propose building fault tolerance for
parallel MD simulations by applying our recent advance in
coded fast Fourier Transform (FFT) algorithm [7]. The most
time-consuming and substantial part of MD simulations is the
calculation of electrostatic forces between all pairs of atoms,
which will take O(N2) time complexity with a brute-force
implementation (N : number of atoms), and it reduces to
O(N logN) using the FFT-based fast Fourier Poisson (FFP)
method [23]. We thus limit the scope fault protection to
only the FFT computation as the remaining parts consume
O(N) time. We implemented “Coded Protein Folding on
AWS” as a proof-of-concept, and experimented with different
numbers of nodes up to 16 nodes. Our experiments show
that the overhead of coding is at most ∼10% of the total
computation time, and the overall performance of the coded
algorithm scaled with the number of worker nodes. While
our experiments are limited to a small number of nodes, how
the algorithm would scale with thousands of nodes remains
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to be seen.

2. MATHEMATICAL BACKGROUNDS ON
MOLECULAR DYNAMICS SIMULATIONS

Molecular dynamics simulates molecular interactions by
solving the classical equations of motion in fine-grained time
steps. In a simple system with potential energy U , the motion
of atoms varying with time t can be formulated as:

mi
d2ri
dt2

= fi, fi = −
dU

dri

Heremi, ri, fi are the mass, position and force exerted on
particle i, respectively. In common biomolecule force fields,
the forces consist of 3 components: bond forces, van der
Waals forces, and electrostatic forces. Among them, the bond
forces and van der Waals forces decay rapidly with separation
and can be safely evaluated with cutoff, resulting in O(N)
complexity, where N is the number of atoms in the system.
However, the electrostatic energy has a slow decay with dis-
tance, and its brute-force calculation would result in O(N2)
complexity. We apply the FFP method in [23] to accelerate
the calculation of electrostatic energy, in which the FFT com-
putation is superlinear with O(NlogN ) complexity and make
up of most of computational load. Basically, the total electro-
static energy can be written as:

E =

N∑
i=1

φi(ri)qi, (1)

where φi(ri) is the electrostatic potential at ri induced
by all the other atoms:

φi(ri) =

∫
ρ(r)

ε|r− ri|
d3r. (2)

Here, ρ(r) represents the charge distribution. Our com-
putation framework is based on the well-known Ewald sum
method [24]. Conceptually, since the terms in the original
summation formula decay relatively slowly with distance,
Ewald sum method “smooths” the charge distribution in or-
der to improve computational efficiency, by omitting some
terms in long-distance interactions. The classic Ewald sum
form is given by:

E =

N∑
i=1

N∑
j>i

qiqj(erfc(
rij

ε
√
2σ

))

εrij
+

1

2

N∑
i=1

φσ(ri)qi −
∑N
i=1 q

2
i

ε
√
2πσ2

.

The Ewald sum method splits the summation into three
parts: the first term is the direct summation to which some
Gaussian function with standard deviation σ is added. It
is therefore made smooth and decays very quickly with the
distance rij due to the nature of erfc function and can hence
be omitted once rij is larger than some pre-defined cutoff
radius. The second term deals with the long-range electro-
static interactions between particles, which can be efficiently
computed by techniques such as FFT [23], multigrid [25] or
FMM [26]. The last term is a constant to compensate for the

self-interaction effect induced by the first term. Hence, in
terms of computational efficiency, the problem reduces to re-
alizing fast and reliable evaluation of long-range electrostatic
interactions, where our coded FFT technique come into use.
The overall process is described in more detail in Section 4.

3. SYSTEM MODEL

Error Model: In our model, we assume errors only occur
during the most computationally intensive steps which is the
computation and communication of FFT. We assume the er-
rors are due to bit flips during the computation with a constant
probability per instruction.
Computing Model: In our model, we assume that there are a
total of S systematic processors, which have the original data
and K coded processors, which store the encoded parity data.
Our computation goal is to simulate the interactions between
N particles using S +K processors, through computing 3D
FFT of M3 points (M : mesh size), while being resilient from
bit flip errors during the computation. For simplicity, we as-
sume that M is divisible by S.
Communication Model: In our model, we assume the pro-
cessors are fully connected and each processor can send or
receive data at the same time (single duplex port model). We
use an α-β model for communication cost. In this model, the
time to send or receive a message of length l is given by:

T = α+ l · β.

4. ALGORITHM DESCRIPTIONS

4.1. Parallel Molecular Dynamics Simulations

To evaluate the impact of coding on the performance of
molecular dynamics simulations, we have designed an algo-
rithm achieving a high level of parallelism as the underlying
simulation platform. We partition the particles along one spa-
tial dimension and each processor is responsible for calculat-
ing the force due to these particles. In our simulation, there
are four stages where we realize parallelism, namely, van
der Waals forces, short-range electrostatic forces calculations
and Ewald mesh spreading via the spatial decomposition,
as well as non-spatial decomposition based FFT part where
our coding technique is applied. In the mesh Ewald method
we compute the Coulomb interactions by first spreading the
off-mesh particles to the grid points (discretization step), then
using FFT to solve the Poisson equation in Fourier space and
inverse FFT to send electrostatic potential back to real space,
and finally transforming the on-mesh potentials to the forces
on original particles. This leaves room for spatial decomposi-
tion based parallelization – each processor owns a part of the
grid, and is responsible for the computations for the atoms in
that part. The overall algorithm is described in Algorithm 1.
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Algorithm 1: Parallel Molecular Dynamics Simulations

1 for each processor px do
2 for each timestep ty do
3 for each particle qi in partition of px do
4 for each particle qj within cutoff radius do
5 calculate van der Waals interactions;

calculate short range electrostatic
interactions;

6 for each meshpoint ml do
7 for each charges qr within cutoff radius do
8 add contribution of the charges to the

charge density ρl;

9 Perform 3d FFTs to get k-space densities ρ̃i;
10 Solve Poisson equations on grid to get φ̃i;
11 Perform inverse 3d FFTs to get φi;
12 for each particle qi in partition of px do
13 calculate long range electrostatic

interactions from mesh potentials;
14 Calculate bond forces;
15 Update velocity and position of particles;

4.2. Coded 3D FFT Algorithm

We will briefly explain the coded 3D FFT algorithm here. For
more details, we refer to [7]. Our method differs from general
distributed 3D FFT algorithms as we do not require the origi-
nal arrangement of data in the final result for processing. Our
method consists of three steps: 1) 2D FFT along the second
and the third dimension, 2) transpose the first and the sec-
ond dimension (all-to-all communication), 3) 1D FFT along
the first dimension. We use optimal MDS codes for adding
redundant computations before step 1 and 3.

5. COMMUNICATION COMPLEXITY ANALYSIS

Theorem 1. Compared to uncoded FFT algorithm, Algo-
rithm 2 has a communication overhead Toverhead as follows:

[6K log(S)+2 log(
S +K

S
)]·α+

9KS − 3K + 2S log(S+K
S

)

S2
M3·β.
(3)

Proof. The initial encoding step for the forward FFT involves
K reduce(S,M3/S) operations. This incurs communica-
tion [27] latency of:

Tenc,fwd = 2K log(S) · α+ 2KM3/S · β.

Similarly, initial encoding step for the inverse FFT involves K
reduce(S,2M3/S) operations, with the factor of 2 due to the
representation of complex numbers. This has communication
latency of:

Tenc,inv = 2K log(S) · α+ 4KM3/S · β.

Algorithm 2: Coded 3D FFT Algorithm

1 for each coded processor pi (i = 1, · · · ,K) do
2 Gather parity symbols from the S systematic

processors;
3 for each processor pi (i = 1, · · · , S +K) do
4 Compute M/S 2D FFTs of size M2;
5 Encode parity symbols along second dimension;

6 All-to-all communication (transpose).
7 for each processor pi (i = 1, · · · , S +K) do
8 Check for errors, and if there is an error, decode to

recover the correct output;
9 for each processor pi (i = 1, · · · , S +K) do

10 Compute M2/S 1D FFTs of size M ;

11 for each coded processor pi (i = 1, · · · ,K) do
12 Scatter parity symbols to the S systematic

processors;
13 for each systematic processor pi (i = 1, · · · , S) do
14 Check for errors, and if there is an error, decode to

recover the correct output;

The All-to-all communication for both forward and inverse
coded FFT involves an All-to-all(S +K,2M3/S) operation.
This communication [28] costs:

Ta2a = log(S +K) · α+
M3 log(S +K)

S
· β,

whereas for non coded FFT it costs:

T ′
a2a = log(S) · α+

M3 log(S)

S
· β.

The decoding for the forward FFT involvesK reduce(S,2M3/S)
operations [29] whose communication cost is:

Tdec,fwd = K log(S) · α+
2K(S − 1)M3

S2
· β.

Likewise, decoding operation for the inverse FFT involves K
reduce(S,M3/S) operations. This communication cost is:

Tdec,inv = K log(S) · α+
K(S − 1)M3

S2
· β.

Therefore, total communication overhead of Algorithm 2 is

Toverhead = Tenc,fwd + Tenc,inv + 2(Ta2a − T ′
a2a)

+ Tdec,fwd + Tdec,inv

= [6K log(S) + 2 log(
S +K

S
)] · α

+
9KS − 3K + 2S log(S+K

S
)

S2
M3 · β

For molecular dynamics simulations, we are also con-
cerned with the relation between overhead and the number of
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atoms. To provide consistent accuracy, the mesh size M must
grow proportional to the number of atoms, N as follows:

M3 ∝ N.

The overhead, Toverhead, can now be written in terms of N as
follows:

[6K log(S)+2 log(
S +K

S
)]·α+

9KS − 3K + 2S log(S+K
S

)

S2
N ·β.

6. EXPERIMENTAL RESULTS AND DISCUSSION

We conducted our simulation on two proteins, a 22-atom ala-
nine dipeptide (AD) in a 2270-atom system and a 255-atom
folded short peptide (FSP) in a 11595-atom system. Their
topology structures are shown in Figure 1. Our electrostatic
force calculation is based on the FFP method from [23]. Fol-
lowing the original paper, we set the crucial parameters as
follows: cutoff = 9Å, σ = 3/

√
2Å. Our program is imple-

mented in Java with OpenJDK 1.8.0 using Open MPI 3.1.2 as
the communication library and JTransforms 3.1 as the FFT li-
brary. All experiments are done in a single thread on Amazon
EC2 M5.large instances with 2 vCPUs at 2.5GHz and 8 GiB
of memory. To reduce the communication latency, all nodes
are placed on the same cluster placement group. Experiments
with no coded nodes and 2 coded nodes are performed with
2, 4, 8 and 16 systematic nodes on the two peptides for 100
time steps. Experiments with in-memory checkpointing (af-
ter each 10 steps) are also performed with up to 8 systematic
nodes to serve as a benchmark for our algorithm1.

To demonstrate error resilience, we artificially injected er-
rors between the FFT computation and All-to-all communica-
tion to simulate bit flips2 during the computation of FFT. We
used error probability p = 1/128 and p = 1/256, where p
denotes the error probability per FFT step. We scaled p pro-
portional to 1/S to make sure that the error probability per in-
struction does not change with varying S. Note that the com-
putational steps per node is proportional to 1/S. However, in
our experiments, error probability per instruction is different
in AD and FSP because we did not scale p with respect to
the size of the computation, M logM or M2 logM2. This
can be one possible explanation for the different behaviors in
AD and FSP. In future experiments, we plan to fix the error
probability over different protein molecules. Figure 2 shows
the comparison of uncoded FFT, coded FFT, and checkpoint-
ing in terms of the total simulation time. The total simulation
time includes both computation and communication. From
the figure, we can observe that our coded FFT algorithm re-
quires only slightly more simulation time compared to the

1This is a very optimistic estimate of the time overhead of checkpointing.
Usually, checkpoints are stored in disks, and this incurs a significant time
overhead.

2Note that our choice of error rate p is much higher than the error rate on
today’s supercomputers.

(1a) AD, p = 1/128 (1b) AD, p = 1/256

(2a) FSP, p = 1/128 (2b) FSP, p = 1/256

Fig. 2. Comparison results between uncoded FFT, coded FFT
and traditional checkpointing technique under two typical er-
ror probabilities after 100 iterations. There is no error detec-
tion/correction for uncoded FFT.

uncoded implementation without error protection. Also, we
noticed that even with coded FFT algorithm, our implementa-
tion roughly scales with the number of nodes, and furthermore
the overhead of coding tends to decrease with the number of
nodes. We attribute this to two reasons: 1) In the communi-
cation overhead given in Equation 3, β term dominates as S
andK are small (at most 8), whileM3 can be very large (e.g.,
323), 2) Up to 16 nodes, computation time might be more sig-
nificant than communication time. In (1a) however, the over-
head increases from 8 to 16 nodes, and we think this is due to
the higher contribution from α term and relatively small M
compared to FSP. Moreover, when the system is more prone
to error, our coded FFT prevails over checkpointing due to
more frequent restarts in checkpointing method under high
error probability.

7. LIMITATIONS AND FUTURE WORK

Our distributed FFT is currently decomposed along one di-
mension, which limits our scalability to M nodes. Incorpo-
rating 2D decomposition would allow scaling to M2 nodes.
Also, we can further optimize encoding and decoding com-
munication suggested in [7]. Lastly, our results are limited to
the soft-error case, especially, for bit-flip errors. There have
been efforts to build ABFT support on MPI [19]. Incorporat-
ing our work with the MPI extension with fault tolerance to
handle not only soft errors but also fail-stop errors or strag-
gling processors would be an interesting future direction.
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