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Abstract—We study scheduling of computation tasks across n
workers in a large scale distributed learning problem. Computa-
tion speeds of the workers are assumed to be heterogeneous and
unknown to the master, and redundant computations are assigned
to the workers in order to tolerate straggling workers. We con-
sider sequential computation and instantaneous communication
from each worker to the master, and each computation round,
which can model a single iteration of the stochastic gradient
descent (SGD) algorithm, is completed once the master receives
k ≤ n distinct computations, referred to as the computation
target. Our goal is to characterize the average completion time
as a function of the computation load, which denotes the portion
of the dataset available at each worker, and the computation
target. We propose two computation scheduling schemes that
specify the computation tasks assigned to each worker, as well
as their order of execution. We also establish a lower bound on
the minimum average completion time. Numerical results show
a significant reduction in the average computation time over the
existing coded and uncoded computing schemes.

Index Terms—Machine learning, distributed computation.

I. INTRODUCTION

The growing computational complexity and huge memory
requirements of emerging big-data applications involving mas-
sive datasets cannot be satisfied on a single machine. Hence,
distributed computation (DC) across tens or even hundreds
of computation servers, called the workers, has been a topic
of great interest [1]–[3]. A major bottleneck in DC, and its
application in large machine learning applications, is that the
overall performance can significantly deteriorate due to slow
servers, referred to as the stragglers. To mitigate this limita-
tion, coded computation techniques, inspired by erasure codes
against packet losses, have been proposed recently [4]–[13].
With coded computation, results from only a subset of non-
straggling workers are sufficient to complete the computation
task. Please see [14] for an overview and classification of
different approaches.

Most existing coded computation techniques are designed
to tolerate persistent stragglers, i.e., workers that are extremely
slow compared to the rest for a long period of time; and
therefore, they discard computations performed by straggling
workers. However, persistent stragglers are rarely seen in
practice, and we often encounter non-persistent stragglers,
which, despite being slower, complete a significant portion of
the assigned tasks by the time faster workers complete their
assignments [15]. Recently, there have been efforts to exploit
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the computations that have been carried out by non-persistent
stragglers at the expense of increasing the communication
load [14]–[18]. Techniques studied in [14]–[17] are based on
coding with associated encoding and decoding complexities,
which may require central processing of all the data points
at the master. Furthermore, the coded design proposed in [15]
depends on the statistical behavior of the stragglers, which may
not be possible to predict accurately in practice. The coding
technique proposed in [17] requires a large number of data
samples assigned to each worker, while the approach in [18]
requires a large number of workers compared to the number
of computation tasks that must be completed.

As opposed to the prevailing coded computation approaches
in the literature, we do not apply any coding across the
dataset or the computations; and instead, consider a centralized
scheduling strategy, which specifies the computations tasks
assigned to each worker and the other they are carried out.
Each worker can compute a limited number of tasks, referred
to as the computation load. Computations are carried out
sequentially, and each computation is sent to the master
immediately after it is completed. Communication delay from
the workers to the master is ignored, although independent
delays across workers can easily be incorporated into our
framework (included in the longer version of the paper [19]).
This sequential computation and communication framework
allows the master to exploit even partial computations by slow
workers.

Assuming that the computation time at each worker is
random, the goal is to characterize the minimum average
completion time. We first provide a closed-form expression for
the average completion time as a function of the computation
schedule. We propose two computation assignment schemes,
and evaluate their average completion times. We also establish
a lower bound on the minimum average completion time,
which is shown to be tight numerically for low and high
computation loads.

II. PROBLEM FORMULATION

We consider DC of an arbitrary function h over a dataset
X = {X1, ..., Xn} across n workers. Each Xi, which we
will call as a data point, may correspond to a matrix/vector
representing a minibatch of labeled data samples with the
same size concatenated along the same dimension. Function
h : V → U is an arbitrary function, where V and U are two
vector spaces over the same field F, and each Xi is an element
of V. The dataset X is distributed across the workers by the
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master, and a maximum number of r ≤ n data points are
assigned to each worker, referred to as the computation load.

The computations of the tasks assigned to each worker are
carried out sequentially. We define the task ordering (TO)
matrix C as an r × n matrix of integers, C ∈ [n]r×n,
[n] , {1, 2, . . . , i}, specifying the computation schedule of the
tasks assigned to each worker. Let cij denote the entry with the
i-th row and j-th column of the TO matrix C, i ∈ [r], j ∈ [n].
Each column of matrix C corresponds to a different worker,
and its elements from top to bottom represent the order of
computations. That is, the entry cij denotes the index of the
element of the dataset that is computed by worker j as its i-th
evaluation, i ∈ [r], i.e., worker j, j ∈ [n], first computes
h(Xc1j ), then computes h(Xc2j ), and so on so forth until
either it computes h(Xcrj ), or it receives an acknowledgement
message from the master, and stops computations. While any
C matrix is a valid TO matrix, it is easy to see that the optimal
TO matrix will have r distinct entries in each of its columns.

We denote by Ti the time worker i spends to compute each
task assigned to it. We assume that Ti is a random variable
with cumulative distribution function (CDF) Fi, i ∈ [n], and,
for j 6= i, Ti is independent of Tj . While the computation
speed of each server is random, we assume that, once its
value is fixed, each computation at that server takes the same
amount of time. This is motivated by the assumption that
all the computation tasks are of equal size and complexity.
Moreover, since tasks are computed sequentially one after
another by a worker, they are likely to experience similar
computing resources and delays. Each worker sends the result
of its computation to the master immediately after its compu-
tation. We assume that the communication time is negligible
compared to the computation time; that is, the result of each
computation becomes available at the master immediately after
its completion.

We denote the time that the master receives h(Xj) by TXj
,

j ∈ [n], which is a random variable. Let Ti,Xj
denote the

time worker i, i ∈ [n], computes h(Xj), then we have TXj =
mini∈[n]{Ti,Xj}, j ∈ [n]. The distributions of TX1 , . . . , TXn

depend on the assignment of the computation tasks to the
workers, as well as the order these tasks are carried out by
each worker. If evaluation h(Xj) has not been assigned to
worker i, we assume that Ti,Xj

=∞, for i, j ∈ [n]. We note
that TXi , in general, is not independent of TXj , for i, j ∈ [n].

Computation is considered completed once the master re-
covers the results of k distinct tasks h (Xi). We denote the
random completion time by TC(r, k). We define the aver-
age completion time as TC(r, k) , E [TC(r, k)], where the
expectation is taken over the distributions of T1, ..., Tn. We
also define the minimum average completion time T

∗
(r, k) ,

minC
{
TC(r, k)

}
, where the minimization is taken over all

possible TO matrices C. It is trivial to see that the optimal
TO matrix will have k distinct entries overall. The goal is to
characterize T

∗
(r, k).

We highlight that, most existing coded DC schemes require
the master to recover the computations (or, their average) for
the whole dataset. However, it is known that convergence

of stochastic gradient descent (SGD) is guaranteed even if
the gradient is computed at only a portion of the dataset
at each iteration [20]–[27]. This is indeed the case for the
random straggling model considered here, where the straggling
workers, and hence the gradient values that are not computed,
vary randomly at each iteration.

III. AVERAGE COMPLETION TIME ANALYSIS

In the following theorem, whose proof can be found in the
longer version [19], we analyze TC(r, k) for a TO matrix C.

Theorem 1. For a given TO matrix C, we have

Pr {TC(r, k) > t} =
∑n

i=n−k+1
(−1)n−k+i+1

(
i− 1

n− k

)
∑
S⊂[n]:|S|=i

Pr
{
TXj > t,∀j ∈ S

}
, (1)

which yields

TC(r, k) =
∑n

i=n−k+1
(−1)n−k+i+1

(
i− 1

n− k

)
∑
S⊂[n]:|S|=i

ˆ ∞
0

Pr
{
TXj > t,∀j ∈ S

}
dt. (2)

Note that the dependence of the completion time statistics
on the TO matrix in (1) and (2) is through the statistics of
TXj

. We also note that the expectations in (1) and (2) are
fairly general, and can apply to models where the computation
time of a task may depend on its order of computation, rather
than being the same for all the computations carried out by
the same worker (see [19] for the details).

The minimum average completion time T
∗
(r, k) can be

obtained as a solution of the optimization problem T
∗
(r, k) =

minC TC(r, k). Providing a general characterization for
T
∗
(r, k) is elusive. In the next section, we will propose two

specific computation task assignment and scheduling schemes.

IV. UPPER BOUNDS ON T
∗
(r, k)

Here we introduce and study cyclic scheduling (CS) and
staircase scheduling (SS) schemes. The average completion
time for these schemes will provide upper bounds on T

∗
(r, k).

A. Cyclic Scheduling (CS) Scheme

CS scheme is motivated by the symmetry across the workers
when we have no prior information on their computation
speeds. CS makes sure that each computation task has a
different order at different workers. This is achieved by a cyclic
shift operator. We denote the TO matrix of the CS scheme
by CCS, and its element in the i-th row and j-th column by
CCS(i, j), for i ∈ [r] and j ∈ [n]. We have

CCS(i, j) = g(j + i− 1), for i ∈ [r], j ∈ [n], (3)

where function g : Z→ Z is defined as follows:

g(l) ,


l, if 1 ≤ l ≤ n,
l − n, if l ≥ n+ 1,

l + n, if l ≤ 0.

(4)
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Due to the linear scaling of the computation time with the
number of computations executed we have, for j ∈ [n],

Tg(j−i+1),Xj
=

{
iTg(j−i+1), for i = 1, . . . , r,

∞, for i = r + 1, . . . , n,
(5)

which results in TXj
= mini=1,...,r

{
iTg(j−i+1)

}
.

B. Staircase Scheduling (SS) Scheme
The SS scheme introduces inverse computation orders at the

workers. The entries of the TO matrix CSS for the SS scheme
are

CSS(i, j) = g(j + (−1)j−1(i− 1)), for i ∈ [r], j ∈ [n]. (6)

We remark here that the main difference between the CS and
SS schemes is that in CS (according to (3)) all the workers
have the same step size and direction in their computations,
while in SS (according to (6)) workers with even and odd
indices have different directions (ascending and descending,
respectively) in the order they carry out the computations, but
the same step size in their evaluations.

For the SS scheme, it can be verified that, for j ∈ [n],

Tg(j+(−1)j+i−1(i−1)),Xj

=

{
iTg(j+(−1)j+i−1(i−1)), for i = 1, . . . , r,

∞, for i = r + 1, . . . , n,
(7)

which results in TXj
= mini=1,...,r

{
iTg(j+(−1)j+i−1(i−1))

}
.

In the longer version of the paper [19], we derive a closed-
form expression for the average completion time of both the
CS and SS schemes for a general statistical model on the
delays.

V. LOWER BOUND ON T
∗
(r, k)

Next, we present a lower bound on the minimal average
completion time T

∗
(r, k) by considering an adaptive model.

Note that the TO matrix, in general, may depend on the
statistics of the computation times, i.e., Fi, i ∈ [n], but it
cannot depend on the particular realization of T1, . . . , Tn. In
this section, we allow the master to employ a distinct TO
matrix CT for each realization of T = (T1, . . . , Tn). For
given T, let TCT(T, r, k) denote the completion time; that
is, the master can receive k distinct computations by time
TCT(T, r, k). We define TLB(T, r, k) , minCT {TCT(T, r, k)},
where the minimization is taken over all possible TO matrices
CT. We also define TLB(r, k) , E [TLB(T, r, k)], where the
expectation is taken over T. We have

T
∗
(r, k) =minC {E [TC(r, k)]}

≥ E [minCT {TCT(T, r, k)}] = TLB(r, k). (8)

It can be shown that the lower bound TLB(T, r, k)
is obtained as the solution of the greedy algorithm out-
lined in Algorithm 1, which finds the optimum solu-
tion k∗1 , . . . , k

∗
n. After finding k∗1 , . . . , k

∗
n, we can obtain

TLB(T, r, k) = max {k∗1T1, . . . , k∗nTn}. Since finding the
statistics of TLB(T, r, k) is analytically elusive, we obtain the
lower bound on t∗(r, k) through Monte Carlo simulations.

Algorithm 1 TLB(T, r, k)

1: procedure FINDING k∗1 , . . . , k
∗
n

2: ki = 0, i ∈ [n]
3: T ′i = Ti, i ∈ [n]
4: for l = 1, 2, . . . , k do
5: Find ml: (kml

+ 1)T ′ml
= min {(k1 + 1)T ′1, . . .

, (kn + 1)T ′n}
6: kml

← kml
+ 1

7: if kml
= r then

8: T ′ml
←∞

9: end if
10: end for
11: k∗i = ki, i ∈ [n]
12: end procedure

VI. NUMERICAL RESULTS

Here we numerically compute the average completion time
of the proposed CS and SS schemes, and compare them with
the existing results in the literature, which includes random
assignment (RA) [18], polynomially coded (PC) [12], and
polynomially coded multi-message (PCMM) [14] schemes, as
well as the above lower bound. We refer to the longer version
of the paper [19] for the description of the RA, PC, and PCMM
schemes, and point out that we have r = n for the RA scheme,
and k = n and r ≥ 2 for both PC and PCMM schemes. We
denote the average completion time of the CS, SS, RA, PC,
and PCMM by TCS(r, k), T SS(r, k), TRA(k, k), TPC(r, n),
and TPCMM(r, n), respectively.

For the fairness of the comparison, we let k = n for the
proposed schemes (since the coded schemes PC and PCMM
are designed to recover the target function at all the dataset).
We assume a shifted exponential computation time at worker
i, i.e., for i ∈ [n],

Fi(t) =

{
1− e−µi(t−τi), if t ≥ τi,
0, if t < τi,

(9)

and investigate the following scenarios:
• Scenario 1: We consider n = 10, where µi and τi

are picked independently and uniformly at random from
intervals (0, 0.1) and (0, 1), respectively, for i ∈ [10].

• Scenario 2: We consider n = 10, and where µi and τi
are picked independently and uniformly at random from
intervals (0, 8) and (0, 0.1), respectively, for i ∈ [10].

We compare the upper and lower bounds on the minimum
average completion time for Scenarios 1 and 2 in Fig. 1a
and Fig. 1b, respectively. We note that for both scenarios, the
values of µ1, . . . , µn and τ1, . . . , τn are distinct. In Scenario
1, the workers are on average slower compared to Scenario
2, and the worker speeds are more likely to be skewed. Both
the SS and CS schemes significantly improve upon the PC
scheme for both scenarios, while the relative improvement
is more notable in Scenario 2. CS scheme outperforms the
PCMM scheme with a significant gain for small values of
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Fig. 1: Upper and lower bounds on the minimum average completion time.

r, but their performances become similar as r increases. SS
scheme, on the other hand, improves upon the PCMM scheme
for all values of r. The proposed CS and SS schemes for a
computation load r = n = 10, provide a reduction of around
%16 and %20 in average completion time upon the RA scheme
in Scenario 1 and Scenario 2, respectively. For Scenario 1, SS
can achieve the same average delay as the RA scheme for
r = 9, while for Scenario 2, with a computation load r = 6,
the performance of SS is close to that of the RA scheme.
Observe that the proposed CS and SS schemes perform closer
to the lower bound for Scenario 2 compared to Scenario 1 in
terms of the average completion time.

VII. CONCLUSIONS

We have studied DC across inhomogeneous computation
servers, i.e., workers, where each has access to a limited
portion of the dataset, defined as the computation load. The
computation here may correspond to each iteration of a
gradient descent algorithm applied on a large dataset, and it
is considered to be completed when the master receives any
k distinct computations. In contrast to the growing literature
on coded computation to mitigate straggling servers, here we
study uncoded computations and sequential communication in
order to benefit from all the computations carried out by the
workers, including the slower ones. Since the instantaneous
computation speeds of the workers are not known in advance,
allocation of the tasks to the workers and their scheduling
become crucial in minimizing the average completion time.
In particular, we consider the assignment of the available data
points to workers with a predesigned computation order. Work-
ers send the result of each computation to the master as soon
as it is executed. We have proposed two particular computation
allocation schemes, called CS and SS. The CS csheme ensures
that each computation task experiences different computation
orders at different workers, in order to guarantee symmetry,
achieved by a cyclic shift operator. However, since the goal is
to recover distinct computations at the server, having the same

(cyclic) computation order at all the workers may delay some
of the computations. For example, the second computation
task is computed after task 1 in all but one of the servers,
which may result in a lot of redundant computations of task
1, while task 2 may be delayed. To resolve this, in SS, we
introduce inverse computation orders at the workers. We have
compared the performance of these proposed schemes with
the existing schemes in the literature, referred to as PC [12],
PCMM [14] and RA [18]. Numerical results show that the
CS and SS schemes can provide significant reduction in the
average completion time over these schemes, particularly when
the speeds of the workers are comparable, in which case
utilizing the computations of the relatively slower workers
become more beneficial. We have also observed that SS in
general outperforms CS thanks to the different computation
schedules assigned to the workers. In [19], we show that these
observations also hold for a practical scenario implemented on
Amazon EC2 cluster.

We also highlight that the reduction in the average com-
pletion time is obtained at the expense of an increase in the
amount of communications from the workers to the master.
If the underlying communication infrastructure can accom-
modate multiple data packets from each worker, uncoded
computation with one of the proposed scheduling schemes
will be very efficient in exploiting multiple inhomogeneous
computation servers. We also remark that, unlike the proposed
schemes, the coded schemes PC and PCMM introduce addi-
tional encoding and decoding complexities, which have not
been considered in the evaluations here, and may introduce
further computation delay. Moreover, in the case of distributed
SGD, having computed the partial gradient on separate data
points may allow the workers to exploit more advanced meth-
ods to reduce their communication load, such as compression
[22], [28] or quantization [20], [29], and can be beneficial in
the case of communications over noisy channels [30], which
may not be applicable in the case of coded computations (see
[31] for an exception).
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