
IMPROVED LATENCY-COMMUNICATION TRADE-OFF FOR MAP-SHUFFLE-REDUCE
SYSTEMS WITH STRAGGLERS

Jingjing Zhang and Osvaldo Simeone

Dept. of Informatics, King’s College London, UK

ABSTRACT

In a distributed computing system operating according to the
map-shuffle-reduce framework, coding data prior to storage
can be useful both to reduce the latency caused by straggling
servers and to decrease the inter-server communication load
in the shuffle phase. In prior work, a concatenated coding
scheme was proposed for a matrix multiplication task. In this
scheme, the outer Maximum Distance Separable (MDS) code
is leveraged to correct erasures caused by stragglers, while
the inner repetition code is used to improve the communica-
tion efficiency in the shuffle phase by means of coded multi-
casting. In this work, it is demonstrated that it is possible to
leverage the redundancy created by repetition coding in order
to increase the rate of the outer MDS code and hence to in-
crease the multicasting opportunities in the shuffle phase. As
a result, the proposed approach is shown to improve over the
best known latency-communication overhead trade-off.

Index Terms— Distributed computing, map-shuffle-
reduce, coded multicasting, stragglers, coding.

1. INTRODUCTION

Consider a distributed computing system, in which K servers
are tasked with the computation of the matrix product Y =
AX, where data matrix X is available at all servers, while
the matrix A can be partially stored at each server. In particu-
lar, each server can store information about A up to a fraction
µ ≤ 1 of its size. As a result, servers need to collaborate in or-
der to compute the output Y by communicating over a shared
multicast channel. Furthermore, servers are typically subject
to random computing times, and hence measures should be
taken in order to ensure correct distributed computation even
in the presence of a given number of straggling servers [1].
The straggling issue has been addressed in master-slave archi-
tecture where there is no inter-server communication [2–7].

Another standard framework to implement this operation
is map-shuffle-reduce [8, 9]. Accordingly, in the map phase,
the servers compute Intermediate Values (IVs) that depend on
the available information about A and X. Generally, only
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a subset of q servers is able to complete this phase within a
desired latency. In the shuffle phase, functions of the IVs are
exchanged among the q non-straggling servers. Finally, in
the reduce phase, the non-straggling servers can collectively
produce all the columns in Y, with each server producing a
given subset.

The performance of the system is characterized by a trade-
off between computational latency — the time elapsed during
the map phase — and communication overhead — the amount
of information exchanged during the shuffle phase [10]. In
fact, waiting for a longer time for more servers to compute
their map operations reduces the need for communication of
IVs during the shuffle phase. This trade-off depends on the
available storage capacity µ at the servers, which limits the
capability of the servers to compute IVs and to withstand era-
sures due to stragglers [11]. A concatenated coding scheme
was proposed in [11] for the described matrix multiplication
task (see Fig. 1).

In this paper, it is demonstrated that the redundancy of the
repetition code in the scheme proposed in [11] can be used not
only to accelerate communications in the shuffle phase, but
also to correct erasures caused by the straggling servers. This
approach is shown to improve the latency-communication
trade-off derived in [11].

Notation: For a ∈ N+, b ∈ Z, we define
(
a
b

)
= 0 when

a < b or b < 0, and we define
(
a
0

)
= 1. For K,P ∈ N+ with

K ≤ P , we define the set [P ],{1, 2, · · · , P}, and the set
[K : P ],{K,K + 1, · · · , P}. |A| represents the cardinality
of set A. We also have 0/0 = 0. Matrices and vectors will be
denoted by upper-case and lower-case bold font, respectively.

2. SYSTEM MODEL AND BACKGROUND

2.1. System Model

Consider a distributed implementation of the matrix multipli-
cation task described by the equality

Y = AX, (1)

with the task-specific matrix A ∈ Fm×n
2T

and the input data
matrix X ∈ Fn×N

2T
, where each element of matrices A and X

consists of T bits, and we have the parameters T,m, n,N ∈
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N+. We use xi ∈ Fn
2T and yi ∈ Fm

2T , i ∈ [N ] to denote
each column vector of input matrix X and output matrix Y,
respectively. Hence, the matrix product (1) corresponds to the
N linear equations yi = Axi, for i ∈ [N ].

There are K distributed servers, each having a storage of
size µmnT bits, with µ ∈ [1/K, 1]. Hence, each server k,
with k ∈ [K], can store a number of bits equal to a fraction
µ of the size of matrix A. The lower bound 1/K ensures that
the entire matrix can be stored across all servers. Specifically,
each server is assumed to store up to mµ row vectors selected
from the rows C = {ci}m

′

i=1 of the linearly encoded matrix

C = [cT1 , · · · , cTm′ ]T = GA, (2)

where we have defined the encoding matrix G ∈ Fm′×m
2T

,
with integer m′ ≥ m. The rows stored by server k are de-
scribed by the set Ck ⊆ C, with |Ck| ≤ mµ. Furthermore,
each server is assumed to know the entire data matrix X, and
they can communicate to each other over multicast links.

Map phase: Each server k ∈ [K] computes the products

Ik = {cX ∈ F1×N
2T

: c ∈ Ck}, (3)

of size mµ for all stored encoded rows c ∈ Ck. The contents
of set Ik are referred to as the IVs available at server k using
the map-reduce terminology. We define D(q) as the average
time required for the first q servers to complete their computa-
tions. The set Q ∈ [K], with |Q| = q, of q servers is arbitrary
and function D(q) is determined by the distribution of the ran-
dom computation times of the servers. As a specific example,
if each server requires a time distributed as a shifted expo-
nential with minimum value µN and average 2µN , i.e., with
cumulative distribution function F (t) = 1−e−(t/(µN)−1), for
all t ≥ µN , the computation latency D(q) is derived as [11]

D(q) = µN

(
1 +

K∑
j=K−q+1

1

j

)
. (4)

Shuffle phase: After the average time D(q), all servers in
the non-straggling set Q coordinate by assigning each server
k in Q a subset of the vectors {yi}Ni=1 to be computed. The
indices of the vectors "reduced" at server k are described by
the set Rk ⊆ [N ], with

∪
k∈Q Rk = [N ]. To enable each

server k to reconstruct the vectors {yi : i ∈ Rk}, any func-
tions of the computed IVs (3) can be exchanged among the q
servers in Q during the shuffle phase. We use Mk to denote
the sets of functions of the IVs Ik that each server k multi-
casts to all other servers in Q during the shuffle phase.

Reduce phase: With the received data
{
Mk′ : k′ ∈

Q\{k}
}

multicast by the other servers and with the locally
computed IVs Ik, each server k in Q computes the assigned
vectors {yi : i ∈ Rk} in the reduce phase.

Performance Criteria: For a value of the number q, of
non-straggling servers, the total number of bits exchanged
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Fig. 1. Encoding scheme used in the map phase.

among the servers during the shuffle phase is
∑

k∈Q |Mk|.
With normalization by the number mT of bits per output col-
umn, we define the communication load as

L(q) =

∑
k∈Q |Mk|
mT

. (5)

Given a computation latency function D(q), e.g., (4), a pair
(D,L) is said to be achievable if there exists a map, shuffling
and reduce policy, that ensures the correct computation of ma-
trix product (1) across q non-straggling servers with compu-
tation latency D ≤ D(q) and communication load L ≤ L(q)
for some q and sufficiently large m,N, T . Finally, we define
the optimal latency-load trade-off curve as

L∗(D) = inf{L : (D,L) is achievable}. (6)

2.2. Background

In [11], a map-shuffling-reduce coding scheme is introduced
that is based on the concatenation of two codes: an MDS code
of redundancy r1 and a repetition code of redundancy r2, as
shown in Fig. 1. The MDS code is used in order to enable de-
coding from the output of an arbitrary set of q non-straggling
servers. To this end, each server needs to store m/q distinct
MDS-coded data points, which is made possible by using a
(K ×m/q,m) MDS code with redundancy

r1 = K/q. (7)

Note that this requires that the fractional cache capacity satis-
fies µ ≥ 1/q. If µ > 1/q, a repetition code of redundancy

r2 = qµ (8)

is used for the purpose of reducing the inter-server commu-
nication load during the shuffle phase. This reduction is ob-
tained by leveraging coded multicasting based on the avail-
able side information at the servers [8].

Overall, since each server can store at most mµ distinct
encoded rows by the storage constraint, the total storage re-
dundancy across all the K servers with respect to the m rows
of matrix A is given as Kmµ/m = Kµ. The map code in
Fig. 1 splits this redundancy between the above two codes as

Kµ = r1r2, (9)

where r1 and r2 are selected in [11] as (7) and (8), respec-
tively.
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3. IMPROVED CONCATENATED CODING

In this section, we propose a policy that is based on the idea
of leveraging the overall (rm,m) concatenated code with re-
dundancy r = r1r2 in Fig. 1 for the purpose of correcting
erasures due to stragglers. In essence, the repetition code of
rate r2 is used not only as a bandwidth-reducing code, but it
also contributes to the reduction of latency in the map phase.
This allows us to establish a set of feasible choices of r1 and
r2 that contain the selection on (7)-(8) as special case.

As a result, the proposed approach allows an MDS code
with redundancy r1 ≤ K/q to encode matrix A and a repe-
tition code with storage redundancy r2 ≥ qµ, while still sat-
isfying the storage constrain r1r2 ≤ Kµ (cf. (9)), and the
achievability requirement. Hence, as compared to the scheme
with the redundancy choice of (7)-(8) in [11], the proposed
scheme can potentially operate with a lower rate r1 and a
higher rate r2 and is potentially able to further speed up the
shuffle phase, reducing the communication load L(q).

To proceed, we first provide a characterization of the
achievable communication load L(q) for the proposed pol-
icy; then, we present an illustrative example; and, finally, we
describe the corresponding general scheme.

3.1. Main Result

We first identify sufficient conditions on the pair (r1, r2) to
yield a feasible policy in the next proposition.

Proposition 1. For storage capacity µ ∈ [1/K, 1] and num-
ber of non-straggling servers q ∈ [⌈1/µ⌉ : K], sufficient con-
ditions for rates (r1, r2) to yield a feasible policy are

qr1 ∈ [q : K], r2 ∈ [⌊qµ⌋ : ⌊Kµ⌋],
r1r2 ≤ Kµ, and(
K

r2

)
−
(
K − q

r2

)
≥ 1

r1

(
K

r2

)
.

(10a)
(10b)

(10c)

Proof. The proof is presented in [12].

Remark 1. Condition (10a) defines the domains of redundan-
cies r1 and r2. Condition (10b) impose the storage capacity
constraint (cf. (9)), while condition (10c) ensures the feasibil-
ity of the reconstruction requirement of data matrix A. It can
be verified that the choice (7)-(8) in [11] satisfies all condi-
tions (10) (see [12]). Furthermore, when K − q < ⌊Kµ⌋,
a feasible choice is (r1 = 1, r2 = ⌊Kµ⌋). With this choice,
the MDS code can be avoided, as shown in the example of
Section 4.

Using a feasible redundancy pair (r1, r2) satisfying (10),
the followed communication load is achievable.

Proposition 2. For a matrix multiplication task executed by
K distributed servers, each having a fractional storage size

400 600 800 1000 1200 1400 1600 1800
0
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Fig. 2. Achievable loads L(q) as a function of the computa-
tion latency D(q) for the proposed scheme and for the scheme
in [11], along with lower bound in [11], with N = 840, µ =
1/2 and different values of K.

µ ∈ [1/K, 1], the following communication load is achiev-
able in the presence of K − q straggling servers with q ∈
[⌈1/µ⌉ : K]

min
(r1,r2)

(
L(q)=N

smax∑
j=sq

Bj

j
+
N
(
1− r1r2

K −
∑smax

j=sq
Bj

)
sq − 1

)
(11)

where pair (r1, r2) is constrained to satisfy the feasible con-
dition (10) and we have defined

Bj,
(
q−1
j

)(
K−q
r2−j

)
1
r1

(
K
r2

) , sq,inf

{
s :

smax∑
j=s

Bj≤1− r1r2
K

}
smax ,min{q − 1, r2}.

(12)

(13)

Proof. The strategy follows the approach in [11], but it relies
on a more general choice of values for the rate pair (r1, r2)
satisfying (10). Details are presented in [12].

Remark 2. Since the solution (7) and (8) of [11] is always
feasible for the constraints (10), it follows that the achievable
communication load L(q) in (11) is always no larger than that
in [11]. This is because the load (11) with r1 and r2 in (7)-
(8) is no larger than the load in [11, eq. (9)]. To demonstrate
that the improvement can be strict, beside the example given
in Section 4, we provide next a numerical example.

A comparison of the achievable communication loads of
the proposed scheme and of the scheme in [11], as well as
the lower bound in [11], can be found in Fig. 2, where we
apply the computation latency D(q) modeled as in (4) and
we have N = 840, µ = 1/2, and different values of K. For
each value of K, at the two end points of computation latency
D(q), obtained with q = ⌈1/µ⌉ and q = K, respectively, the
two achievable communication loads coincide. The proposed
scheme is seen to bring a positive reduction in communication
load, as compared to the algorithm in [11] for intermediate
values of the latency D(q), that is, when there are a moderate
number of straggling servers. Furthermore, as the total num-
ber K of servers increases, it is observed that the reduction is
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Fig. 3. Illustration of two phases of shuffling for the example in Section 4: (a) Coded shuffling among servers 1, 2, 3 and 4 in
the first phase (i = 3); (b) Coded shuffling among servers 1, 2, 3 in the second phase (i = 2).

more significant, and the gap between the achievable load of
the proposed scheme and the lower bound becomes smaller.

4. EXAMPLE AND DISCUSSION

Consider K = 6 servers, with q = 4 non-stragglers, storage
capacity µ = 1/2, as well as the parameters m = 20, N = 12
and sufficiently large T [13]. For this example, the scheme
in [11] chooses r1 = 3/2 and r2 = 2 according to (7)-(8). As
shown below, the proposed scheme instead can operate with
r1 = 1 and r2 = Kµ = 3. Accordingly, the MDS code is not
used and the scheme only relies on the repetition code of rate
r2 to correct erasures.

Map phase: Without using an MDS code to encode the
rows of matrix A, i.e., with r1 = 1, we have C = A in (2).
Each row of matrix A is then replicated r2 = 3 times, so that
each server k stores |Ck| = µm = 10 uncoded rows of A.
This is done by storing each row in a subset K ⊆ [K] of three
servers, with |K| = r2. We write aK for the row that is stored
at all servers in set K and we have Ck = {aK : k ∈ K} for
the set of rows stored at server k. WLOG, we assume that
servers 1, 2, 3, 4 are the first q = 4 servers that complete
their computations, i.e., Q = {1, 2, 3, 4}. We recall that each
server k computes the |Ck| = 10 products in the set Ik in
(3) in the map phase. In the reduce phase, each server k is
assigned to output N/q = 3 consecutive vectors, i.e., Rk =
{y3(k−1)+i = Ax3(k−1)+i : i ∈ [3]}.

Shuffle phase. To this end, each server needs to obtain a
set of IVs through multicast transmissions. Take server 1 for
example. To reduce vector y1 = Ax1 ∈ R1, server 1 can
use the IVs {ax1 : a ∈ C1} in I1. Hence, it needs ten extra
IVs {ax1 : a ∈ C\C1}, each of which has been computed by
at least one of the servers 2, 3, 4. This is because each row
a /∈ C1 is stored at r2 = 3 servers that do not include server
1. The same holds for vectors y2 and y3, and thus server 1
needs 30 IVs in total from servers 2, 3, 4. Similarly, each of
the other three servers requires 30 IVs. All these required IVs
are exchanged in the shuffle phase.

We operate separately by multicasting messages within
groups of i + 1 servers in three different phases, with i =
3, 2, 1, and carried out in this order. This follows the same
approach as in [11], with the caveat that here we can benefit

from a larger multicasting gain (see Remark 3).
Accordingly, in the first phase, labeled as i = 3 and illus-

trated in Fig. 3(a), the servers share the needed IVs that are
available at subsets of three of the four servers in Q. By con-
struction, one such message exists at each of the four disjoint
subsets of three servers in Q. To this end, we perform coded
shuffling among the four servers by sending a multicasting
message from one server to the other three. In each transmis-
sion, each of the receiving server can recover one desired IVs.
At the end of this phase, each server can obtain three IVs.

In the second phase, for i = 2, we deliver the needed
IVs that are available at subsets of two of the four server in
Q. By construction, there are 72 such IVs, with six avail-
able at each of the four subsets of three servers in Q. The
four groups of three servers operate in the same way by send-
ing a set of multicasting messages from one server to the
other two. Take for example the subset {1, 2, 3} illustrated
in Fig. 3(b). Server 2 sends the three messages {a126x6+i ⊕
a236xi}3i=1, from which server 1 and 3 obtain {a236xi, i ∈
[3]} and {a126x6+i}3i=1, respectively, by canceling their own
interference with side information. Server 1 and 3 can act
similarly. As a result, for any subset of 3 servers, each server
can obtain 6 needed IVs. After this phase, each server can
recover 18 IVs in total.

Finally, each server k still needs 9 IVs {ai56x3(k−1)+j :
i ∈ [4]\{k}, j ∈ [3]}, each of which is computed by only one
of the servers in Q. Hence, in the last phase, for i = 1, the
overall 36 IVs are shared by means of unicast transmission.

Overall, 4 + 36 + 36 = 76 coded IVs are communicated.
This yields a communication load of L(q = 4) = 76/m =
3.8, which is smaller than that of L(q = 4) = 4.2 in [11].

Remark 3. This example shows that the MDS code can be
avoided when q is sufficient large. This is because, thanks to
the repetition code, the entire matrix A, and hence the prod-
uct (1), can be recovered by combining the information avail-
able at the non-straggling servers when we store uncoded
rows from matrix A. As compared to the policy in [11], a
higher storage redundancy r2 = Kµ = 3 is obtained for the
repetition code. As a result, the multicasting gain Kµ = 3
can be reaped in the shuffle phase, while the maximum gain
for [11] is limited to 2. Hence, the proposed scheme achieves
a lower communication load.
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