
BYZANTINE-RESILIENT DISTRIBUTED LARGE-SCALE MATRIX COMPLETION

Feng Lin* Qing Ling* Zhiwei Xiong†

* School of Data and Computer Science, Sun Yat-Sen University
† School of Information Science and Technology, University of Science and Technology of China

ABSTRACT
In this paper, we aim at completing a large-scale low-rank matrix
over a distributed network, which is subject to Byzantine attacks.
We consider solving a nonconvex matrix factorization model with
the distributed successive over-relaxation (SOR) method, where the
distributed workers compute their private matrices using their own
training data and the public matrix sent by the master, while the
master updates the public matrix through aggregating the private ma-
trices sent by the workers. However, the Byzantine workers could
deliberately send faulty messages to the master so as to bias the opti-
mization process. To address this issue, we propose to replace the ag-
gregation step in the distributed SOR method by several state-of-the-
art robust ones: geometric median, median, Krum and h-Krum. We
conduct numerical experiments on the Netflix dataset and demon-
strate the effectiveness of the proposed robust aggregation strategies
in handling Byzantine attacks.

Index Terms— Distributed large-scale optimization, Byzantine
attacks, matrix completion

1. INTRODUCTION

The problem of recovering a low-rank or approximately low-rank
matrix with missing entries arises in many applications, such as col-
laborative filtering [1], computer vision [2, 3] and global position-
ing [4, 5], to name a few. The matrix completion task can be formu-
lated as a convex nuclear norm minimization model [6], or noncon-
vex rank minimization [7] and matrix factorization [8,9,10] models.
Popular algorithms include singular value soft thresholding [6], sin-
gular value hard thresholding [7], stochastic gradient descent [8, 9],
and alternating least squares [10], etc.

Most of the existing algorithms consider solving the matrix com-
pletion problem in a single computer or data center, which collects
all the observed entries (namely, training data) from their owners.
This centralized learning scheme, though computationally easy to
handle, brings significant privacy risks [11]. The recent affairs such
as the iCloud leaks of celebrity photos and the surveillance program
of PRISM increase the public concerns on protecting personal in-
formation in the big data era. In view of the tradeoff between data
utility and user privacy, a novel federated learning scheme has been
proposed and gained popularity in recent years [12, 13, 14]. Instead
of collecting the training data from their owners to a centralized au-
thority, a federated learning system leaves the training data stored
locally and distributes the computation across the owners (namely,
workers). In addition to addressing the user privacy issue, such a
federated learning scheme also utilizes the computation resources of
workers. Take the matrix completion task using medical data as an
example, every worker representing a hospital holds the training da-
ta in its own submatrix and completes the missing entries, with the
help of a central master node that fuses the messages sent by all the
workers and coordinates the learning process.

However, the federated learning scheme also faces serious se-
curity challenges. A worker could be vulnerable to various failures,
such as data corruptions, computation errors or even hacker attack-
s. In these circumstances, the messages sent by the worker to the
master are problematic, and hence may lead the federated learning
process to a wrong end. In this paper, we consider a general Byzan-
tine failure model [15, 16]. Therein, a Byzantine worker knows all
information about all other workers and is able to arbitrarily modify
its message sent to the master.

Developing Byzantine-resilient learning algorithms has received
a lot of research interest in recent years. Most of the existing
works rely on distributed stochastic gradient descent (SGD) as the
workhorse, and modify the gradient aggregation rule to cope with
the Byzantine attacks. To be specific, in every iteration of SGD,
every worker computes a stochastic gradient and sends it to the
master, while the master runs a descent step using the mean of the
stochastic gradients to update the optimization variable and then
sends the variable back to all the workers. When some workers are
Byzantine, they can manipulate the messages sent to the master so
as to bias the descent direction. To handle the Byzantine attacks, a
key observation is that, when the data across the workers are inde-
pendently and identically distributed (i.i.d.), the stochastic gradients
computed at every iteration are i.i.d. too. This fact motivates us
to apply robust estimation techniques to aggregate the stochastic
gradients. It has been shown that geometric median [17, 18], di-
mensional median [19, 20] and marginal trimmed mean [21] are
Byzantine-resilient in aggregating stochastic gradients comparing
to the naive mean. More sophisticated algorithms called as Krum
and h-Krum are proposed in [22]. For every candidate stochastic
gradient, the master selects a fixed number of nearest neighboring
stochastic gradients, computes the distances from the candidate and
its neighbors, and defines the average distance as the score of the
candidate. Krum selects the candidate with the minimal score as the
estimate of the gradient, while h-Krum uses average of h candidates
with the minimal scores. Other works include [24] that consider-
s asynchronous Byzantine-resilient SGD and [25] that addresses
saddle-point attacks in the nonconvex setting.

In this paper, we consider solving the nonconvex matrix factor-
ization model with the distributed SOR method, where the distribut-
ed workers compute their private matrices using their own training
data and the public matrix sent by the master, while the master up-
dates the public matrix through aggregating the private matrices sent
by the workers. However, the Byzantine workers could deliberate-
ly send faulty messages to the master so as to bias the optimization
process. To address this issue, we propose to replace the aggrega-
tion step in the distributed SOR method by several state-of-the-art
robust ones: geometric median, median, Krum and h-Krum. We
conduct numerical experiments on the billion-entry Netflix dataset
and demonstrate the effectiveness of the proposed robust aggrega-
tion strategies in handling Byzantine attacks.

8167978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

2. PROBLEM FORMULATION AND
DISTRIBUTED SOR METHOD

In this paper, we focus on the matrix factorization model for low-
rank matrix completion [8, 9, 10], in the form of

min
X,Y,Z

1

2
‖XY − Z‖2F , s.t. Zij = Wij , ∀(i, j) ∈ Ω. (1)

Here {Wij , (i, j) ∈ Ω} are observed entries of a low-rank matrix
W ∈ Rn×m. We approximate W by Z ∈ Rn×m and impose the
observation constraints Zij = Wij , for all (i, j) ∈ Ω. Since Z is
low-rank, it can be factorized as the product of two smaller matrices
X ∈ Rn×r and Y ∈ Rr×m, where r is an estimate of the rank of Z.
By minimizing the cost function (1/2)‖XY −Z‖2F , we aim to find
the best rank-r factorization of Z.

The matrix factorization model (1) can be solved by various al-
gorithms, including stochastic gradient descent [8,9] and alternating
least squares [10]. In this paper, we consider the nonlinear succes-
sive over-relaxation (SOR) method proposed in [10], which mini-
mizes the cost function with respect to X , Y and Z in an alternating
manner. At time t, the updates are

Zt(ω) = ωZt + (1− ω)U tY t, (2a)

Xt+1 = Zt(ω)(Y t)T , (2b)

(U t+1, V t+1) = QR(Xt+1), (2c)

Y t+1 = (U t+1)TZt(ω), (2d)

Zt+1 = U t+1Y t+1 + PΩ(W − U t+1Y t+1), (2e)

where U t+1V t+1 is the QR decomposition of Xt+1 with U t+1 ∈
Rn×r satisfying (U t+1)TU t+1 = I and V t+1 ∈ Rr×r being upper-
diagonal, ω > 1 is the SOR parameter and Zt(ω) ∈ Rn×m is an
auxiliary SOR matrix. When ω = 1, (2) reduces to the standard
alternating least squares algorithm. The weight ω can be fixed, or
adaptively adjusted during the optimization process [10].

The SOR method can be conveniently implemented in a dis-
tributed way. Suppose that there is a distributed network with 1
master andK workers. We split the matrixW by columns toK sub-
matrices in the form of W = [W1, · · · ,WK], where Wk ∈ Rn×mk

and
∑K
k=1 mk = m. The set Ω is also split into subsets in the

form of Ω = Ω1 ∪ · · · ∪ ΩK accordingly. Likewise, the variables
Y , Z and Z(ω) can be split into Y = [Y1, · · · , YK] with every
Yk ∈ Rr×mk , Z = [Z1, · · · , ZK] with every Zk ∈ Rn×mk and
Z(ω) = [Z1(ω), · · · , ZK(ω)] with every Zk(ω) ∈ Rn×mk , re-
spectively. Let worker k have the training data in Wk with respect
to the set Ωk, and maintain the updates of the private matrices Yk
and Zk. On the other hand, the update of the public matrix X is
maintained by the master. It is straightforward to rewrite (2) to

Ztk(ω) = ωZtk + (1− ω)U tY tk , (3a)

Qt+1
k = Ztk(ω)(Y tk)T , (3b)

Xt+1 =

K∑
k=1

Qt+1
k , (3c)

(U t+1, V t+1) = QR(Xt+1), (3d)

Y t+1
k = (U t+1)TZtk(ω), (3e)

Zt+1
k = U t+1Y t+1

k + PΩk (Wk − U t+1Y t+1
k), (3f)

The distributed SOR method is described in Algorithm 1. The
master first receives Qt+1

k from all workers and sums up Qt+1
k to

update Xt+1 =
∑K
k=1 Q

t+1
k . Then, the master runs QR decom-

position Xt+1 = U t+1V t+1, broadcasts U t+1 to all workers and
receives residuals ‖PΩk (Wk − U t+1Y t+1

k)‖2F . The optimization
process continues if the overall residual is larger than a predefined
threshold, and stops otherwise. For worker k, it first calculates
Ztk(ω) = ωZtk + (1− ω)U tY tk and sends Qt+1

k = Ztk(ω)(Y tk)T to
the master. After receivingU t+1 from the master, it updates Y t+1

k =

(U t+1)TZtk(ω) and Zt+1
k = U t+1Y t+1

k +PΩk (Wk−U t+1Y t+1
k).

Finally, the residual ‖PΩk (Wk − U t+1Y t+1
k)‖2F is computed and

sent to the master. The algorithm continues until the master stops,
and worker k obtains Zk, which is an approximation of Wk. This
distributed scheme fits for the federated learning setting in the sense
that the training data and the recovered entries are stored at the
workers, while the master only has access to Qt+1

k .

Algorithm 1 Distributed SOR Method
Master

1: while not convergent do
2: Receive Qt+1

k from workers;
3: Update Xt+1 =

∑K
k=1 Q

t+1
k ;

4: Run QR decomposition Xt+1 = U t+1V t+1;
5: Broadcast U t+1 to all workers;
6: Receive residuals ‖PΩk (Wk−U t+1Y t+1

k)‖2F from workers;
7: Check the residuals and determine whether to stop or not.
8: end while

Worker k
1: Input: U0, Y 0

k , Z0
k and {Wij , (i, j) ∈ Ωk};

2: while not convergent do
3: Calculate Ztk(ω) = ωZtk + (1− ω)U tY tk ;
4: Send Qt+1

k = Ztk(ω)(Y tk)T to master;
5: Receive U t+1 from master;
6: Update Y t+1

k = (U t+1)TZtk(ω);
7: Update Zt+1

k = U t+1Y t+1
k + PΩk (Wk − U t+1Y t+1

k);
8: Send the residual ‖PΩk (Wk − U t+1Y t+1

k)‖2F to master.
9: end while

3. BYZANTINE-RESILIENT
DISTRIBUTED SOR METHOD

In the distributed SOR method, a critical step is that the master ag-
gregates the matricesQt+1

k received from the workers so as to update
the public matrix Xt+1 =

∑K
k=1 Q

t+1
k . This aggregation step is ef-

ficient when all workers are trustworthy, but could be problematic
when some workers are Byzantine. As we have discussed in Sec-
tion 1, the Byzantine workers can send arbitrary Qt+1

k such that the
master calculates a wrong Xt+1, which shall be sent to all work-
ers and prevent the regular workers from correctly completing their
submatrices. We illustrate this scenario in Fig. 1, where f out of
K workers are Byzantine and the identities of the Byzantine work-
ers are unknown. Our goal is to develop a robust distributed SOR
method that is resilient to Byzantine attacks.

The key idea is to combine Byzantine-resilient aggregation ap-
proaches with the distributed SOR method. Observe that the aggre-
gation Xt+1 =

∑K
k=1 Q

t+1
k can be represented as

Xt+1 = KMean(Qt+1
1 , · · · , Qt+1

K), (4)

where Mean(Qt+1
1 , · · · , Qt+1

K) = (1/K)
∑K
k=1 Q

t+1
k is the mean

of the matrices Qt+1
k . It has been shown in [17, 18, 19, 20, 21, 22]

that mean is not robust to Byzantine attacks. Thus, we propose to

8168

Fig. 1. An illustration of the distributed SOR method under Byzan-
tine attacks. In the master-worker architecture, f out of the total K
workers are Byzantine and their identities are unknown.

replace the naive mean by one of the following Byzantine-resilient
aggregation operations.

Geometric median. Given a set of matrices {Qt+1
k }, their geo-

metric median is defined as

GeoMed(Qt+1
1 , · · · , Qt+1

K) = arg min
P∈Rn×r

K∑
k=1

‖Qt+1
k − P‖F ,

which is unique as long as the matrices Qt+1
k are not collinear. Ge-

ometric median provides a centralized trend in multiple dimensions
and is widely used in robust statistics [26], as well as Byzantine-
robust SGD [17, 18].

A popular approach to calculating the geometric median is the
Weiszfeld’s algorithm [27,28] based on iteratively re-weighted least
squares. At time τ of the inner loop, it updates

P τ+1 =

∑K
k=1 Q

t+1
k /‖Qt+1

k − P τ‖F∑K
k=1 1/‖Qt+1

k − P τ‖F
.

When the initial value of P 0 is properly chosen, the Weiszfeld’s al-
gorithm achieves a sublinear rate of convergence of O(1/τ) [29].

Median. The dimensional median Median(Qt+1
1 , · · · , Qt+1

K)
calculates the entry-wise median of the submatrices Qt+1

k [19, 20].
It is a computationally cheap substitute for the mean.

Krum. The Krum method returns a robust estimate of the mean,
defined as

Krum(Qt+1
1 , · · · , Qt+1

K) = Qt+1
k∗ ,

where
k∗ = arg min

k∈[K]

∑
k→k′
‖Qt+1

k −Qt+1
k′ ‖F .

For any k 6= k′, k → k′ denotes the set containing K − f − 2 near-
est neighbors of Qt+1

k . Thus, Qt+1
k∗ is the matrix with the minimal

summed distance to its nearest neighbors [22]. Note that the Krum
method requires that the maximal number of Byzantine workers f is
known in advance.

h-Krum. The h-Krum method recursively applies Krum for
h = K − 2f − 2 rounds and outputs h-Krum(Qt+1

1 , · · · , Qt+1
K)

that is the average of the h selected matrices. After every round,
the selected matrix Qt+1

k is moved from the candidate set [22]. The
same as Krum, it also needs to know the maximal value of f .

With these robust aggregation approaches, we modify the dis-
tributed SOR method in Algorithm 1 to a Byzantine-resilient ver-
sion, as stated in Algorithm 2. The only difference is to replace the
aggregation step Xt+1 =

∑K
k=1 Q

t+1
k by Xt+1 = KP t+1

k where

n×m 17770× 481089
number of training data 99072112

ratio of training data 0.0116
number of test data 1408395

Table 1. Specifications of the Netflix dataset.

P t+1
k is any of the above-mentioned robust estimates for the mean of
{Qt+1

k }. We shall demonstrate the effectiveness of the Byzantine-
resilient distributed SOR method with numerical experiments, and
compare the performance of different robust aggregation rules.

Algorithm 2 Byzantine-Resilient Distributed SOR Method
Master

1: while not convergent do
2: Receive Qt+1

k from all workers;
3: Update Xt+1 = KP t+1

k where P t+1
k is a robust estimate

4: for the mean of {Qt+1
k };

5: Run QR decomposition Xt+1 = U t+1V t+1;
6: Broadcast U t+1 to all workers;
7: Receive residuals ‖PΩk (Wk−U t+1Y t+1

k)‖2F from workers;
8: Check the residuals and determine whether to stop or not.
9: end while

Regular Worker k
1: Input: U0, Y 0

k , Z0
k and {Wij , (i, j) ∈ Ωk};

2: while not convergent do
3: Calculate Ztk(ω) = ωZtk + (1− ω)U tY tk ;
4: Send Qt+1

k = Ztk(ω)(Y tk)T to master;
5: Receive U t+1 from master;
6: Update Y t+1

k = (U t+1)TZtk(ω);
7: Update Zt+1

k = U t+1Y t+1
k + PΩk (Wk − U t+1Y t+1

k);
8: Send the residual ‖PΩk (Wk − U t+1Y t+1

k)‖2F to master.
9: end while

Byzantine Worker k
1: while not convergent do
2: Send a manipulated matrix Qt+1

k to master;
3: Receive U t+1 from master;
4: Send a manipulated residual to master.
5: end while

4. NUMERICAL EXPERIMENTS

In this section, we evaluate the robustness of the proposed Byzantine-
resilient distributed SOR method combined with various aggregation
rules. We use the full Netflix dataset [23], whose specifications are
listed in Table 1. On a computer equipped with 8GB RAM and
two Xeon E5-2620 CPUs, we launch 1 master and 20 workers that
evenly split the columns of the training data. The algorithms are im-
plemented in C++ and the point-to-point communication is handled
by OpenMPI. The recovery performance is evaluated by the root
mean square error, defined as

RMSE =

√ ∑
(i,j)∈T

(Ŵij −Wij)2.

Here T denotes the test set, Wij is the true value and Ŵij is the
corresponding completed value.

In numerical experiments, we consider the proposed Byzantine-
resilient distributed SOR method with different aggregation rules:

8169

geometric median, median, Krum and h-Krum. We also consid-
er two baseline algorithms: (i) mean that is the standard distributed
SOR method shown in Algorithm 1, but some workers are Byzan-
tine; and (ii) mean without Byzantine where the Byzantine workers
are absent. We shall investigate the robustness of these methods un-
der Guassian attacks and sign-flip attacks. The number of Byzan-
tine workers is chosen as f = 4 or f = 8. Throughout the numerical
experiments, we set the rank estimate r = 10, while adaptively ad-
just the SOR parameter ω according to [10].

With Gaussian attacks, at every iteration of the algorithm, ev-
ery Byzantine worker sends to the master a Gaussian random matrix,
whose mean and the standard variation are the same to those of the
true one. Observe from Fig. 2 that mean fails in both f = 4 and
f = 8, showing that the standard distributed SOR method is not
Byzantine-resilient. When f = 4, geometric median and h-Krum
are close to mean without Byzantine, and outperform Krum and me-
dian. When the number of Byzantine workers is increased to f = 8,
h-Krum and Krum are better than geometric median, while mean is
the worst. Note that both h-Krum and Krum need to exactly know
the number of Byzantine workers f . If this knowledge is imperfect,
the performance of h-Krum and Krum will deteriorate.

With sign-flip attacks, the Byzantine workers multiply every
sent entry by a constant ε < 0. In the numerical experiments, we
set ε = −3 and depict the results in Fig. 3. In both f = 4 and
f = 8, mean fails and median is the worst among the Byzantine-
resilient aggregation rules. Among the other three aggregation rules,
geometric median outperforms h-Krum and Krum, demonstrating its
robustness to sign-flip attacks.

Without Byzantine attacks, geometric median and h-Krum are
able to approximate mean well, as shown in Fig. 4. Median is again
the worst among the four Byzantine-resilient aggregation rules. This
is reasonable since mean and median could have a remarkable gap.
Krum is worse than geometric median and h-Krum, but is much bet-
ter than median.

In summary, geometric median and h-Krum are robust aggre-
gation rules in all the three cases. When the number of Byzantine
attacks is known in advance, h-Krum is a proper choice as its compu-
tation complexity is lower than that of geometric median. Otherwise,
we recommend to use geometric median, given that the computation
overhead is acceptable.

Number of iterations
0 100 200 300 400 500 600 700 800 900 1000

R
M

S
E

1

1.5

2

2.5

3

3.5

4

mean without Byzantine
geometric median
Krum (f=4)
h-Krum (f=4)
median
mean

Number of Iterations
0 100 200 300 400 500 600 700 800 900 1000

R
M

S
E

1

1.5

2

2.5

3

3.5

4

mean without Byzantine
geometric median
Krum (f=8)
h-Krum(f=8)
median
mean

Fig. 2. Gaussian attacks with f = 4 (TOP) and f = 8 (BOTTOM).

Number of iterations
0 100 200 300 400 500 600 700 800 900 1000

R
M

S
E

1

1.5

2

2.5

3

3.5

4
mean without Byzantine
geometric median
Krum (f=4)
h-Krum (f=4)
median
mean

Number of iterations
0 100 200 300 400 500 600 700 800 900 1000

R
M

S
E

1

1.5

2

2.5

3

3.5

4
mean without Byzantine
geometric median
Krum (f=8)
h-Krum (f=8)
median
mean

Fig. 3. Sign-flip attacks with f = 4 (TOP) and f = 8 (BOTTOM).

Number of iterations
0 100 200 300 400 500 600 700 800 900 1000

R
M

S
E

1

2

3

4
mean
geometric median
Krum (f=0)
h-Krum (f=0)
medain

Fig. 4. Without Byzantine attacks.

5. CONCLUSIONS

In this paper, we develop Byzantine-resilient methods to solve the
distributed large-scale matrix completion problem. We adopt the dis-
tributed SOR method as the optimization framework, and introduce
robust aggregation rules for the master to fuse messages received
from the workers, among which some might be Byzantine. On the
Netflix dataset, we numerically evaluate the performance of four ex-
isting robust aggregation rules, including geometric median, mean,
Krum and h-Krum. In our future work, we shall further investigate
this problem in the following aspects:

1. The robust aggregation rules generally rely on the assump-
tion that the received messages are i.i.d. to identify outliers.
This assumption, however, does not necessarily hold in the
matrix completion setting. Therefore, statistically establish-
ing the performance guarantee of the robust aggregation rules
for matrix completion is of piratical importance.

2. The distributed SOR method requires the master to calculate a
QR decomposition at every iteration. To alleviate the compu-
tation burden, we shall consider using the light-weight SGD
algorithm to solve the matrix factorization model, and lever-
aging Byzantine-resilient techniques to improve robustness.

Acknowledgement. Qing Ling is supported by NSF China grant
61573331 and NSF Anhui grant 1608085QF130. Zhiwei Xiong is
supported by NSF China grant 61671419.

8170

6. REFERENCES

[1] Z. Kang, C. Peng, and Q. Cheng, “Top-N recommender sys-
tem via matrix completion,” In: Proceedings of AAAI, 2016

[2] P. Chen and D. Suter, “Recovering the missing components
in a large noisy low-rank matrix: Application to SFM,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 8, pp. 1051–1063, 2004

[3] X. Alamedapineda, E. Ricci, Y. Yan, and N. Sebe, “Recogniz-
ing emotions from abstract paintings using non-linear matrix
completion,” In: Proceedings of CVPR, 2016

[4] A. Montanari and S. Oh, “On positioning via distributed matrix
completion,” In Proc. of SAM, 2010

[5] J. Cheng, Z. Song, Q. Ye, and H. Du, “MIL: A mobile indoor
localization scheme based on matrix completion,” In: Proceed-
ings of ICC, 2016

[6] J. Cai, E. Candes, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM Journal on Optimiza-
tion, vol. 20, no. 4, pp. 1956–1982, 2010

[7] D. Goldfarb and S. Ma, “Convergence of fixed-point continua-
tion algorithms for matrix rank minimization,” Foundations of
Computational Mathematics, vol. 11, no. 2, pp. 183–210, 2011

[8] R. Gemulla, E. Nijkamp, P. Haas, and Y. Sismanis, “Large-
scale matrix factorization with distributed stochastic gradient
descent,” In: Proceedings of SIGKDD, 2011

[9] W. Chin, Y. Zhuang, Y. Juan, and C. Lin, “A fast parallel s-
tochastic gradient method for matrix factorization in shared
memory systems,” ACM Transactions on Intelligent Systems
and Technology, vol. 6, no. 1, article 2, 2015

[10] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factor-
ization model for matrix completion by a nonlinear successive
over-relaxation algorithm,” Mathematical Programming Com-
putation, vol. 4, no. 4, pp. 333–361, 2012

[11] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini, “Secu-
rity, privacy and trust in Internet of Things: The road ahead,”
Computer Networks, vol. 76, pp. 146–164, 2015

[12] J. Konecny, H. McMahan, and D. Ramage, “Federated op-
timization: Distributed optimization beyond the datacenter,”
arXiv: 1511.03575, 2015

[13] J. Konecny, H. McMahan, F. Yu, P. Richtarik, A. Suresh, and
D. Bacon, “Federated learning: Strategies for improving com-
munication efficiency,” arXiv: 1610.05492, 2016

[14] V. Smith, C. Chiang, M. Sanjabi, and A. Talwalkar, “Federated
multi-task learning,” In: Proceedings of NIPS, 2017

[15] L. Lamport, R. Shostak, and M. Pease, “The Byzantine gener-
als problem,” ACM Transactions on Programming Languages
and Systems, vol. 4, no. 3, pp. 382–401, 1982

[16] N. Lynch, Distributed Algorithms, Morgan Kaufmann Publish-
ers, San Francisco, USA, 1996

[17] Y. Chen, L. Su, and J. Xu. “Distributed statistical machine
learning in adversarial settings: Byzantine gradient descent,”
arXiv: 1705.05491, 2017

[18] C. Xie, O. Koyejo, and I. Gupta, “Generalized Byzantine-
tolerant SGD,” arXiv: 1802.10116, 2018

[19] C. Xie, O. Koyejo, and I. Gupta, “Zeno: Byzantine-suspicious
stochastic gradient descent,” arXiv: 1805.10032, 2018

[20] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Byzantine-
robust distributed learning: Towards optimal statistical rates,”
arXiv: 1803.01498, 2018

[21] C. Xie, O. Koyejo, and I. Gupta, “Phocas: Dimension-
al Byzantine-resilient stochastic gradient descent,” arXiv:
1805.09682, 2018

[22] P. Blanchard, E. Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient
descent,” In: Proceedings of NIPS, 2017

[23] J. Bennett and S. Lanning, “The Netflix prize,” In Proc. of KD-
DCup, 2007

[24] G. Damaskinos, E. Mhamdi, R. Guerraoui, R. Patra, and M.
Taziki, “Asynchronous Byzantine machine learning (the case
of SGD),” arXiv: 1802.07928, 2018

[25] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Defend-
ing against saddle point attack in Byzantine-robust distributed
learning,” arXiv: 1806.05358, 2018

[26] H. Cardot, P. Cenac, and P. Zitt, “Efficient and fast estimation
of the geometric median in Hilbert spaces with an averaged
stochastic gradient algorithm,” Bernoulli, vol. 19, no. 1, pp.
18–43, 2013

[27] E. Weiszfeld and F. Plastria, “On the point for which the sum
of the distances to n, given points is minimum,” Annals of Op-
erations Research, vol. 167, no. 1, pp. 7–41, 2009

[28] U. Eckhardt, “Weber’s problem and Weiszfeld’s algorithm in
general spaces,” Mathematical Programming, vol. 18, no. 1,
pp. 186–196, 1980

[29] A. Beck and S. Sabach, “Weiszfeld’s method: Old and new
results,” Journal of Optimization Theory applications, vol. 164,
no. 1, pp. 1–40, 2015

8171

		2019-03-18T11:18:24-0500
	Preflight Ticket Signature

