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ABSTRACT

Most current machine learning algorithms make highly confi-
dent yet incorrect classifications when faced with unexpected
test samples from an unknown distribution different from
training; such epistemic uncertainty (unknown unknowns)
can have catastrophic safety implications. In this conceptual
paper, we propose a method to leverage engineering science
knowledge to control epistemic uncertainty and maintain de-
cision safety. The basic idea is an algorithm fusion approach
that combines data-driven learned models with physical sys-
tem knowledge, to operate between the extremes of purely
data-driven classifiers and purely engineering science rules.
This facilitates the safe operation of data-driven engineering
systems, such as wastewater treatment plants.

Index Terms— AI safety, algorithm fusion, epistemic un-
certainty, metacognition, wastewater treatment

1. INTRODUCTION

Real-time classification in the presence of noisy data is a
problem faced in many engineering systems, whether consid-
ering wastewater treatment plants, autonomous vehicles, the
smart grid, advanced manufacturing, and sustainable build-
ings, among other systems that have explicit physical impacts.
Motivations include quality control, regulatory compliance,
and equipment protection while also providing the possibility
of real-time optimization of plant operation to reduce en-
ergy and cost. The information and decision components in
many such engineering systems are now based on supervised
learning built on training data.

A typical decision that a real-time wastewater classifica-
tion device would make is whether (1) water is safe for non-
potable purposes, (2) water is safe for discharge, (3) water
is suitable for microbial process, (4) water can be treated by
non-reverse osmosis (RO) filtration, (5) water requires RO,
(6) water will damage RO filters. Note that the classes are
not disjoint, and so in principle there are 26 = 64 possible
classes of which 13 are actually possible due to logic con-
straints, cf. [1]. As examples of the impact misclassification

may have: errors under (2) could lead to public health disas-
ters such as a cholera epidemic due to wastewater discharge
from a United Nations peacekeeper camp with deficient treat-
ment [2]; errors under (4) could lead to much more energy-
intensive treatment than required; and errors under (6) could
damage costly equipment. Some of the 13 categories with
serious deleterious impacts occur very rarely.

We had previously collected black water and gray water1

samples from municipal wastewater treatment plants and else-
where [3, 4]. As Fig. 1 shows, despite spending hundreds of
person-hours over several months, our dataset of 235 distinct
wastewater samples did not achieve balanced coverage for all
13 categories; rather 5 categories remained unseen. Note that
the central difficulty here is not labeling of data for supervi-
sion, e.g. via crowdsourcing, as in other settings of machine
learning [5], but in gathering unlabeled data in the first place.
Yet, classifying rare events correctly is critically important
for public health, environmental protection, and the safety of
wastewater equipment.

This problem of gathering real (or even realistic) train-
ing data covering the entire high-dimensional universe of pos-
sibilities arises in numerous engineering systems and infras-
tructures where safety is very important and leads to the prob-
lem of unknown unknowns (epistemic uncertainty) for purely
data-driven systems.

As a centuries-old engineering discipline, however, there
is also traditional engineering and regulatory knowledge of
wastewater classification expressed in terms of physical pa-
rameters measured using laboratory techniques, see e.g. US
EPA discharge standards (NPDES Permit Writer’s Manual).
Although these parameters cannot be measured using real-
time sensors, a rough approach is to train nonlinear regression
models to map from sensor data to laboratory-based physical
parameters, thereby establishing surrogacy relationships that
can be used in conjunction with traditional wastewater rules.

In this largely conceptual paper, we propose an approach
to controlling epistemic uncertainty due to limited and uneven
training data in engineering domains using algorithm fusion.

1Black water contains human waste whereas gray water is wastewater
from domestic sources other than bathrooms and toilets.
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Fig. 1. Despite collecting wastewater samples from a variety
of natural sources and conditions, only 8 of 13 classification
categories (as expert-labeled) were covered.

The basic idea is to combine learned models with traditional
engineering knowledge; this allows generalization not just to
known unknowns as in typical supervised learning but also
generalization to unknown unknowns. The learned model is
given a kind of metacognition through a one-class classifier
to know when it does not know, and should default back to
rough traditional engineering knowledge and maintain safety.
The question of optimally aggregating the two different kinds
of models becomes a statistical signal processing problem.

Since ideas of epistemic uncertainty and AI safety may
be less familiar, Sec. 2 first introduces background and also
some related work. Next, Sec. 3 gives our novel algorithm
fusion approach to combine data-driven and physical knowl-
edge. Finally, Sec. 4 concludes with several suggestions for
future work; indeed this short paper is largely conceptual and
several novel statistical signal processing questions remain.

2. EPISTEMIC UNCERTAINTY AND SAFETY

Despite the potential benefits of real-time machine learning
for engineering systems, a central difficulty is model uncer-
tainty from incomplete knowledge [6, 7] due to limited and
uneven training data. Note that test samples may differ from
training in both expected and unexpected manners, and gath-
ering all unexpected data is not viable. The difficulty is ex-
acerbated by the fact that contrary to the intuition that un-
familiarity should lead to lack of confidence, most current
machine learning algorithms (including deep learning) make
highly confident yet incorrect classifications when faced with
unexpected test samples from an unknown distribution dif-
ferent from training [8, 9]. They lack metacognition. Fig. 2
shows real-time sensor data readings from [3,4]; one can note
that there is much white space even in a low-dimensional em-
bedding.

The reason this happens is quite straightforward: the clas-
sification function is only loosely controlled by data for ar-
eas of the feature space that are unobserved in training, so
the learning algorithm may extrapolate wildly without incur-
ring much loss. Note that multiple instances of learning al-

Fig. 2. Two-dimensional principal components embedding
of the 235 expert-labeled wastewater training samples from
Fig. 1, as projected from an eight-dimensional sensor space.
Typical machine learning classifiers may be highly confident
but incorrect in the white spaces.

gorithms, e.g. having different initialization or different sub-
samples of training data as in ensemble methods, may be ag-
gregated to control the individual wild behavior [8].

Differently distributed samples may specifically pose a
safety risk in cyberphysical systems like wastewater treatment
plants [10]: “It may be that the distribution the samples actu-
ally come from cannot be known, precluding the use of co-
variate shift and domain adaptation techniques. This is one
form of epistemic uncertainty that is quite relevant to safety
because training on a dataset from a different distribution can
cause much harm.” We may indeed have unknown unknowns,
precluding domain adaptation of various kinds [11]. Methods
such as meta-recognition [12] and reject options [13, 14] de-
cline to classify when the system is likely to fail on known
unknowns, but are not concerned with quality of confidence
estimates and are not analyzed with respect to their ability to
reject unknown unknown samples.

Though there may be epistemic uncertainty when build-
ing data-driven models, there may also be much traditional
engineering knowledge (drawing on both engineering expe-
rience and on foundations from physical/biological sciences
[15], so-called engineering science [16, 17]). Here we try to
leverage such engineering science knowledge to control epis-
temic uncertainty so as to have safe classifications even for
unknown unknowns. Physics-guided neural networks aim to
overcome the deficiencies of typical machine learning mod-
els that do not generalize well beyond the available labeled
data and may not even respect known engineering science
laws [18]. As in that work, our goal is to operate between
extremes of purely data-driven classifiers and purely engi-
neering science rules; rather than a Lagrangian formulation
with loss functions corresponding to data fidelity and scien-
tific consistency as in that work [18], we develop a novel al-
gorithm fusion approach.
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Fig. 3. Schematic diagram of basic approach to incorporating
both machine learning models and engineering science rules.

3. ALGORITHM FUSION TO COMBINE
DATA-DRIVEN AND PHYSICAL KNOWLEDGE

To combine data-driven and physics-driven models for safety,
we consider hard/soft switching, and also propose a statistical
learning framework for learning with epistemic uncertainty.

3.1. Hard Switching

Let us first consider a very basic approach to incorporat-
ing both a learned model and traditional engineering science
rules (operating on physical parameters estimated from sensor
readings), as shown in Fig. 3. As inspired by outlier detection
(and especially universal information theory approaches to
the problem [19]), we use available data to train a one-class
classifier [20]; outlier detection and one-class classification
determine whether a test sample comes from the same dis-
tribution as the training data. In operation, when sensor data
is within the support of the learned model (which is trained
on the same (labeled) data as the one-class classifier), i.e.
when the one-class classifier declares it is within range, then
the learned model is used; when the sensor data is outside of
range, a combination of estimation algorithms and traditional
wastewater classification rules are used.

As detailed in [3, 4] using appropriately weighted mis-
classification cost metrics, we previously demonstrated that
this basic approach is effective for the wastewater applica-
tion, in using an off-the-shelf SVM-based one-class classi-
fier [20] to perform hard switching, random forest classifier
as the learned model, and LMSE estimator for physical pa-
rameters from sensor data [21] together with wastewater
theory-derived rules for non-potable reuse from the US Army
(TB MED 577) and for discharge from US EPA standards
(NPDES Permit Writer’s Manual) as the physical knowledge-
based model. This effectiveness is both in improving classi-
fication performance within the support of the learned model
and in preventing wild behavior outside the support, com-
pared to either model acting alone.

Note that this setting where the learned model is better
than the traditional model within support (improves accu-

Fig. 4. Weighting (blue gradient) allocates more weight
(darker) to the learned model where there is more training
data in the sensor space (red dots), than in areas where there
is little training data.

racy), whereas the traditional model is better outside the
support (controls wild behavior), has strong similarities to the
so-called algorithmic noise tolerance (ANT) approach to cir-
cuit design [22]. In ANT, there is a main block that is either
right on in terms of negligible estimation error or has error
that is very large, as well as an estimator block that always has
non-negligible noise but never very large. With this analogy
and the binary hypothesis test for choosing between the two
models here, for insight we can directly analyze the Bayes-
optimal likelihood ratio test (with appropriately-designed
threshold) developed therein [22]. Note that in practice with
limited data we would use a one-class classifier.

3.2. Soft Switching

Can an algorithm fusion approach softer than such hard
switching be more effective?

Taking such a hybrid approach of using both models si-
multaneously boils down to estimating the likelihood of the
learned model’s effectiveness in different parts of sensor data
space and then using that as a weight in an aggregation proce-
dure [22]. This is depicted schematically in Fig. 4. In partic-
ular, we will need to not just perform one-class classification
but rather to perform distribution support estimation [23, 24]
to get a one-class posterior distribution on the learned model.

The basic style of result in the information-theoretic den-
sity estimation literature is that given n independent sam-
ples from an unknown discrete probability distribution P =
(p1, p2, . . . , pS), with unknown support size S, consider the
problem of estimating a functional of the distribution of the
form: F (P ) =

∑S
i=1 f(pi), where f : (0, 1] → R is a

continuous function. Then there is a general procedure for
constructing minimax rate-optimal estimators for these func-
tionals under L2 loss. Extensions to real-valued data is also
possible [25]. Of particular importance to us, such proce-
dures return not only the minimax estimator but also the cor-
responding minimax risk, which can then be used directly
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for weighting in the aggregation function of algorithm fu-
sion. Moreover, there are converse bounds for such estimation
questions [23] to determine basic limits of this architecture.

3.3. PAC Learning Framework

To formalize the general performance limits of learning with
epistemic uncertainty further, let us extend basics of tradi-
tional statistical learning theory [26] in characterizing sample
size required for algorithms to learn a family of concepts. In
particular, theoretical learning guarantees for an optimal al-
gorithm depend on the complexity of the concept classes con-
sidered and the size of the training sample.

The Probably Almost Correct (PAC) framework for su-
pervised learning helps define the class of learnable concepts
in terms of the number of sample points needed to achieve an
approximate solution. Here, examples are instances of data
used for learning; features are the set of attributes associated
to an example; labels are values or categories assigned to ex-
amples; and a hypothesis set is a set of functions mapping
features to the set of labels.

Let us denote the set of all possible examples as X and
the set of all possible labels as Y . For illustrative purposes
here, consider binary classification so Y = {0, 1}. A con-
cept c : X → Y is a mapping from X to Y and a concept
class is a set of concepts we may wish to learn and is de-
noted C. Assume examples are independently and identically
distributed (i.i.d.) according to some fixed but unknown dis-
tribution D. Then the learner considers a fixed set of possible
concepts H , called a hypothesis set. The learner receives a
sample S = (x1, . . . , xm) drawn i.i.d. according to D as well
as labels (c(x1), . . . , c(xm)) which are based on a specific
target concept c ∈ C to learn. The task is to use the labeled
sample S to select a hypothesis hS ∈ H that has small gener-
alization error with respect to the concept c. The traditional
generalization error (in the setting of known unknowns) of a
hypothesis h ∈ H is denoted R(h) and defined as follows.

Definition 1. Given a hypothesis h ∈ H , a target concept
c ∈ C, and an underlying distribution D, the generalization
error of h is defined by R(h) = Prx∼D[h(x) 6= c(x)].

A concept class C is PAC-learnable if the hypothesis re-
turned by a possible algorithm after observing a number of
points polynomial in 1

ε and 1
δ is approximately correct (error

at most ε) with high probability (at least 1 − δ). The PAC
framework establishes sample complexity and generalization
bounds. As an example, consider a finite hypothesis set H
such that the target concept c is in H .

Theorem 1. Let H be a finite set of functions mapping from
X to Y . Let A be an algorithm that for any target concept
c ∈ H and i.i.d. sample S returns a consistent hypothesis
hS (i.e. its empirical error is zero). Then for any ε, δ > 0,
the inequality PrS∼Dm [R(hS) ≤ ε] ≥ 1 − δ holds if m ≥

1
ε (log |H| + log 1

δ ). This sample complexity result is equiva-
lent to a generalization bound: for any ε, δ > 0, with proba-
bility at least 1− δ, R(hS) ≤ 1

m (log |H|+ log 1
δ ).

Although the generalization error of a hypothesis is not
directly accessible to the learner since both the distribution D
and the target concept c are unknown, the learner can measure
the empirical error of a hypothesis on the labeled sample S.
Note that the generalization error is measured with respect to
D, but when we have test samples that are from a completely
unknown distribution π in some class of distributions Π, we
should define a notion of epistemic uncertain generalization
error as follows.

Definition 2. Given a hypothesis h ∈ H , a target concept
c ∈ C, and an underlying distribution D, the epistemic
uncertain generalization error of h is defined by Re(h) =
supπ∈Π Prx∼π[h(x) 6= c(x)].

The goal is to prove a lower bound similar to Thm. 1
under epistemic uncertainty. One approach may be to con-
vert universal hypothesis testing and anomaly detection lower
bounds [27,28] into statistical learning lower bounds, follow-
ing [29, 30]. The reason that universal information-theoretic
techniques may be useful in settings of epistemic uncertainty
is they too consider worst-case performance over π ∈ Π.

4. CONCLUSION

This paper described an AI safety question that arises in engi-
neering systems design where training data may not capture
rare but deleterious phenomena, yet traditional physics-based
engineering knowledge exists. As we have suggested in this
short conceptual paper, this basic setting introduces several
interesting signal processing questions on model aggregation
and statistical learning questions from a PAC perspective.

5. REFERENCES

[1] G. Hommel and G. Bernhard, “Bonferroni procedures
for logically related hypotheses,” J. Stat. Plan. Infer-
ence, vol. 82, no. 1-2, pp. 119–128, Dec. 1999.

[2] R. Piarroux, R. Barrais, B. Faucher, R. Haus, M. Piar-
roux, J. Gaudart, R. Magloire, and D. Raoult, “Under-
standing the cholera epidemic, Haiti,” Emerging Infec-
tious Diseases, vol. 17, no. 7, pp. 1161–1168, Jul. 2011.

[3] N. Kshetry and L. R. Varshney, “Optimal wastewa-
ter management using noisy sensor fusion,” in 2017
Arab-American Frontiers of Science, Engineering, and
Medicine Symposium. Rabat, Morocco: National
Academies, Nov. 2017.

[4] ——, “Optimal wastewater management using ad-
vanced analytics,” in 2018 Illinois Wastewater Profes-
sionals Conference, Springfield, IL, Apr. 2018.

8165



[5] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual
recognition challenge,” arXiv:1409.0575 [cs.CV]., Sep.
2014.

[6] J. Attenberg, P. Ipeirotis, and F. Provost, “Beat the ma-
chine: Challenging humans to find a predictive model’s
‘unknown unknowns’,” J. Data Inf. Qual., vol. 6, no. 1,
Mar. 2015.

[7] T. G. Dietterich, “Steps toward robust artificial intelli-
gence,” A. I. Mag., vol. 38, no. 3, pp. 3–24, Fall 2017.

[8] Z. Li and D. Hoiem, “G-distillation: Reducing over-
confident errors on novel samples,” arXiv:1804.03166
[cs.CV]., Apr. 2018.

[9] E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur,
and B. Lakshminarayanan, “Do deep generative mod-
els know what they don’t know?” arXiv:1810.09136
[stat.ML]., Oct. 2018.

[10] K. R. Varshney and H. Alemzadeh, “On the safety of
machine learning: Cyber-physical systems, decision sci-
ences, and data products,” Big Data, vol. 5, no. 3, pp.
246–255, Sep. 2017.
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