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ABSTRACT

In this paper, we consider a `1-PCA problem under the large-
scale data sample scenario, which has extensive applications
in science and engineering. Previous algorithms for the prob-
lem either are not scalable or do not have good convergence
guarantees. Our contribution is threefold. First, we de-
velop a novel accelerated version of the proximal alternating
maximization method to solve the `1-PCA problem. Sec-
ond, by exploiting the Kurdyka-Łojasiewicz property of the
problem, we show that our proposed method enjoys global
convergence to a critical point, which improves upon existing
convergence guarantees of other first-order methods for the
`1-PCA problem. Third, we demonstrate via numerical ex-
periments on both real-world and synthetic datasets that our
proposed method is scalable and more efficient and accurate
than other methods in the literature.

Index Terms— `1-PCA, extrapolation, accelerated proxi-
mal alternating maximization, Kurdyka-Łojasiewicz inequal-
ity, global convergence

1. INTRODUCTION

Principal Component Analysis (PCA) is a fundamental data
analytic tool that has found many applications in various ar-
eas of science and engineering [8]. Roughly speaking, PCA
aims to find a non-trivial lower-dimensional subspace that can
explain most of the variance in the data, and a common for-
mulation is given by

max
B∈RD×K

‖XTB‖2F s.t. BTB = I, (1.1)

where X ∈ RD×N is the data matrix consisting of N data

samples x1, . . . ,xN ∈ RD and ‖A‖F =
(∑

i,j |Ai,j |2
)1/2

denotes the Frobenius norm of the matrix A. Problem (1.1),
which we shall refer to as the `2-PCA, can be solved by per-
forming a singular value decomposition (SVD) of the data
matrix X [7]. Unfortunately, `2-PCA is sensitive to the out-
liers in the data and can lead to a poor performance in the pres-
ence of outliers. In practice, the outliers can arise as a result
of transmission error, bursty-noise effect, etc. This motivates
the development of variants of PCA that are robust against
outliers. One such variant is the `1-PCA, which was proposed

and studied in, e.g., [3, 6, 20, 9]. Instead of maximizing the
Frobenius norm of XTB, `1-PCA seeks to maximize its `1-
norm; i.e.,

max
B∈RD×K

‖XTB‖1 s.t. BTB = I, (1.2)

where ‖A‖1 =
∑
i,j |Aij | denotes the `1-norm of the matrix

A. Unlike the `2-PCA problem (1.1), which admits an essen-
tially closed-form solution that can be computed in polyno-
mial time, the `1-PCA problem (1.2) is nonsmooth nonconvex
and is NP-hard in general [15]. As such, various heuristics
have been proposed to tackle Problem (1.2). Kwak [10] pre-
sented a first-order method with fixed-point iterations to solve
(1.2) when K = 1. Subsequently, Nie et al. [19] extended the
above first-order method to handle the case where K ≥ 2.
In both works, the authors showed that the iterates gener-
ated by their respective algorithms have a convergent subse-
quence (i.e., the so-called subsequential convergence prop-
erty), and that any limit point of the iterates is a critical point
of Problem (1.2). Recently, Markopoulos et al. [15] pro-
posed an exact algorithm for solving (1.2) with complexity
O(NDK−K+1). Note that the algorithm has polynomial-time
complexity when D and K are fixed. However, in practice, it
can only handle a small number of samples (i.e., N is small)
and low-dimensional data (i.e., D � N ). Later, Markopou-
los et al. [16] proposed a sub-optimal algorithm based on
the notion of bit-flipping for tackling Problem (1.2). They
showed that their proposed algorithm also enjoys subsequen-
tial convergence, and that the set of limit points is a subset
of those of the algorithms in [10, 19]. It is worth noting
that subsequential convergence is a strictly weaker property
than convergence—the latter refers to the property that the
sequence of iterates converge to a single point, while the for-
mer allows for the possibility that the sequence has multiple
subsequences that converge to different points, which makes
it numerically difficult to identify which point is a limit point
of the algorithm.

In practice, lightweight methods such as first-order meth-
ods are often preferred when solving the `1-PCA prob-
lem (1.2), as the number of data samples N and the data
dimension D are often large. In view of the above discussion,
we are thus motivated to develop fast first-order methods
for tackling (1.2) with strong convergence guarantees. In
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this work, we propose a novel accelerated version of the
proximal alternating maximization (PAM) method in [1] for
solving Problem (1.2). Our method, which we call acceler-
ated PAM (APAM), performs a linear extrapolation on one
block-variable of the `1-PCA formulation, which can not only
accelerate the original PAM method but also return solution
with better quality than existing methods empirically. It is
worth mentioning that such acceleration technique is mainly
developed for methods that solve convex optimization prob-
lems in the literature, such as heavy-ball method [21, 23],
Nesterov’s accelerated gradient descent [17, 18] and FISTA
[4]. Recently, there have been some works that aim to extend
this technique to methods that solve nonconvex optimization
problems. In particular, Li and Lin [11] proposed monotone
and nonmonotone accelerated proximal gradient methods to
solve general nonsmooth nonconvex problems, while Li et
al. [12] analyzed the convergence of the accelerated proximal
gradient method with momentum for nonconvex problems.
However, since the proximal operator associated with the
`1-PCA problem (1.2) is not known to be efficiently com-
putable, the methods in [11, 12] are ineffective for solving
Problem (1.2). By contrast, our proposed (A)PAM method
can take advantage of the structure of the `1-PCA prob-
lem (1.2), thus resulting in extremely efficient computations.
Moreover, by utilizing the so-called Kurdyka-Łojasiewicz
(KŁ) property (see [1, 2]) of a carefully constructed Lya-
punov function associated with Problem (1.2), we are able to
show that the iterates generated by the (A)PAM method con-
verge globally to a single critical point of (1.2). To the best
of our knowledge, this is the first global convergence result
for an accelerated version of the PAM method and improves
upon the subsequential convergence results in [10, 19, 16] for
the `1-PCA problem (1.2).

Besides the notations introduced earlier, we use −1 ≤
A ≤ 1 to denote −1 ≤ Aij ≤ 1, ∀ i, j and δA to denote
the indicator function of the set A; i.e., δA(A) is 0 if A ∈
A and +∞ otherwise. Furthermore, the subdifferential of a
proper lower semicontinuous function f : Rn → R ∪ {+∞}
is denoted by ∂f ; see, e.g., [22, Chapter 8].

2. ACCELERATED PAM FOR `1-PCA
Our proposed (A)PAM method for the `1-PCA problem is
based on the following two-block reformulation of Prob-
lem (1.2):

max
BTB=I

‖XTB‖1 = max
A∈A,B∈B

H(A,B), (2.1)

where H(A,B) := tr(ATXTB), A := {A ∈ RN×K :
−1 ≤ A ≤ 1}, and B := {B ∈ RD×K : BTB = I}.
Specifically, given an initial point (A0,B0), our (A)PAM
method generates the sequence {(Ak,Bk)}, k = 0, 1, 2, . . . ,
via the scheme

Ak+1 = arg max
A∈A

{
H(A,Y k)− 1

2α
‖A−Ak‖2F

}
, (2.2)

Bk+1 = arg max
B∈B

{
H(Ak+1,B)− 1

2β
‖B −Bk‖2F

}
,

(2.3)
where Y k = Bk+θ(Bk−Bk−1) and θ ∈ [0, 1] when k ≥ 1
and Y 0 = B0. The novelty here is that we perform an extrap-
olation step for the variable B by adding a momentum term
that involves the previous and current iterates. When θ = 0,
we recover the PAM updates in [1]. The upshot of the up-
dates (2.2) (2.3) is that they both have closed-form solutions.
Indeed, it can be easily verified that

Ak+1 = ΠA
[
Ak + αXTY k

]
, (2.4)

where ΠA is the projector onto the box A; i.e.,

ΠA(D) =


−1 if Dij < −1,

Dij if − 1 ≤ Dij ≤ 1,

1 if Dij > 1.

On the other hand, we have Bk+1 = Uk+1V k+1T , where

Bk + βXAk+1 = Uk+1Λk+1V k+1T (2.5)

is a compact SVD of Bk + βXAk+1. Note that since Bk +
βXAk+1 ∈ RD×K , the complexity of computing the com-
pact SVD to solve (2.3) is O(D2K), which is very cheap un-
der the large-scale setting D � N . The total complexity of
each iteration is O(NDK). We now summarize the APAM
method for solving the `1-PCA problem (1.2) in Algorithm 1.

Algorithm 1 Accelerated Proximal Alternating Maximiza-
tion Method (APAM) for `1-PCA

1: Input: Step sizes α > 0, β > 0; extrapolation parameter
θ ∈ [0, 1]; initial points A0 ∈ A, Y 0 = B0 ∈ B

2: for k = 0, 1, 2, . . . do
3: Ak+1 = ΠA

[
Ak + αXTY k

]
4: Bk+1 = Uk+1V k+1T , where (Uk+1,V k+1) is given

by (2.5)
5: Y k+1 = Bk+1 + θ(Bk+1 −Bk)
6: end for

3. CONVERGENCE ANALYSIS OF APAM

To facilitate our convergence analysis of the APAM method,
let us rewrite (2.1) as the following unconstrained minimiza-
tion problem:

min
A∈RN×K ,B∈RD×K

Ψ(A,B), (3.1)

where Ψ(A,B) := −H(A,B) + δA(A) + δB(B). The up-
shot of the form (3.1) is that it allows us to apply the powerful
machinery in [1, 2] (particularly [2, Theorem 2.9]) to analyze
the convergence behavior of the APAM method. To begin, let
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us construct the following Lyapunov function associated with
Problem (3.1):

Θ(A,B,B′) = Ψ(A,B) +
γ

2
‖B −B′‖2F , γ ∈ [Lθ,

1

β
],

(3.2)
where L = ‖X‖ is the spectral norm of data matrix X .
For simplicity, let us write Ck := (Ak,Bk,Bk−1), ∀k =
1, 2, . . .. We then have the following preparatory results:

Lemma 3.1 (Sufficient Decrease of Θ). Let {Ck}k≥0 be the
sequence generate by Algorithm 1, where the step size α <
1
Lθ is a constant and the penalty parameter γ satisfies γ ∈
[Lθ, 1

β ]. Then, the sequence {Θ(Ck)}k≥0 satisfies

Θ(Ck+1)−Θ(Ck) ≤ −ρ1‖Ck+1 −Ck‖2F
for some constant ρ1 > 0.

Lemma 3.2 (Safeguard). The sequence {Ck}k≥0 is bounded
and W k+1 ∈ ∂Θ(Ck+1), where

W k+1 :=

(
−XT∆k+1 + θXT∆k +

1

α
(Ak −Ak+1),(

γ − 1

β

)
∆k+1,−γ∆k+1

)
and ∆k := Bk−Bk−1. Furthermore, there exists a constant
ρ2 > 0 such that

‖W k+1‖F ≤ ρ2‖Ck+1 −Ck‖F .

Due to space limitation, we defer the proofs of Lem-
mas 3.1 and 3.2 to the full version of this paper.

Lemma 3.3 (Relationship between Ψ and Θ). Let A ∈ A
and B ∈ B. Then,

0 ∈ ∂Ψ(A,B)⇔ 0 ∈ ∂Θ(A,B,B).

Lemma 3.3 can be easily verified using the properties of
the subdifferential; see, e.g., [22, Chapter 8].

Lemma 3.4 (KŁ Property of the Lyapunov Function). The
Lyapunov function Θ has the KŁ property (see [2, Definition
2.4] for the definition).

Lemma 3.4 follows from the fact that Θ(A,B,B′) con-
sists of polynomials (i.e., −H(A,B) + γ

2 ‖B − B′‖2F ) and
indicator functions of the polyhedral set A and the smooth
manifold B; see, e.g., [1, 2].

Armed with the above lemmas and invoking [2, Theorem
2.9], we have the following global convergence result for the
APAM method.

Theorem 3.5. For any initialization A0 ∈ A, B0 ∈ B, the
sequence generated by the APAM method (Algorithm 1) will
converge to a critical point of the `1-PCA problem (1.2).

Theorem 3.5 establishes, for the first time, the global con-
vergence of an accelerated version of the PAM method in [1].
This is achieved by a novel construction of the Lyapunov
function (3.2) associated with Problem (3.1).

4. NUMERICAL RESULTS

In this section, we demonstrate the superiority of the APAM
method1 for solving the `1-PCA problem (1.2) via numeri-
cal experiments. Our codes are implemented in MATLAB
R2018a. The tests are conducted on a standard computing
server with 1000GB memory and 4 Intel(R) Xeon(R) CPUs
each consisting 10 cores with 2.40GHz.

4.1. Performance of Different First-Order Methods

In this subsection, we compare our APAM method with the
PAM method in [1] and the non-greedy first-order fixed-point
method (NFFM) in [19]. We utilize the real-world datasets
epsilon, mnist downloaded from LIBSVM [5].2 We employ
the following stopping criterion: At each iteration k, we com-
pute the function value fk and terminate the algorithm if there
are 10 consecutive iterations such that

|fk+m − fk+m−1| ≤ ε, m = 1, . . . , 10,

where we choose ε = 10−7.
We implement two sets of experiments on different sub-

sets of the datasets epsilon, mnist to compare the runtimes
and objective values of APAM, PAM, and NFFM, where
epsilon is a size 100000 × 500 subset of the original one.
Specifically, we set the size of subsets of the full data as
10%, 20%, . . . , 100% in each test. The step sizes for APAM
and PAM are both set to α = 106, β = 1. To avoid the
influence of the starting points and other random factors, we
run each algorithm 10 times from different starting points.
To be consistent, different algorithms have the same starting
point in each test. Finally, for each algorithm in a test, we
select the maximum among the 10 obtained objective values
as the recorded value. Furthermore, we average the runtimes
of the 10 runs as the recorded time. To compare the subopti-
mal value of each algorithm, we will use the value of APAM
as the baseline, and compute the ratio of improvement, i.e.,
others’ recorded value minus APAM’s divided by APAM’s.

As seen from Fig. 1, APAM is the most efficient and ac-
curate algorithm when compared to other two first-order al-
gorithms, as it consumes much less time and converges to a
better solution than PAM and NFFM.

4.2. Computation Accuracy of Different Methods

In this subsection, we investigate how far the objective values
returned by APAM, PAM, NFFM, and the bit-flipping method
(BFM) in [16] are from the global optimal value of the `1-
PCA problem (1.2). Note that BFM is a high-order method.
To do so, we make use of the exact algorithm proposed in [15]
to check the optimality of the aforementioned methods. It
should be noted that the algorithm in [15] has a polynomial

1We set θ = 1 unless specified otherwise.
2https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/

datasets/
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complexity of O(ND) when D is fixed and D � N . We set
the step sizes for APAM and PAM to α = 10, β = 10. Here,
we define the relative gap between an obtained objective value
and the global optimal value as

∆(B,B?) =
‖XTB?‖1 − ‖XTB‖1

‖XTB?‖1
, (4.1)

where B? is an optimal solution to Problem (1.2) and B is
a solution obtained by any of the aforementioned methods.
The quantity (4.1) is called the performance degradation ratio
in [16]. We generate 1000 data matrices {X1, . . . ,X1000}
randomly with N = 20, D = 3, and K = 2. Based on
1000 tests, we calculate the empirical cumulative distribution
functions (CDFs) of the performance degradation ratios of the
algorithms and plot them in Fig. 2.

According to the above experiments, when the number of
initialization is 5 or 15, BFM can return the optimal solution
92% and 97% of the time, respectively, while APAM can re-
turn the optimal solution about 84% and 96%, respectively.
These numbers are much better than PAM and NFFM. Since
APAM is a first-order method and BFM is a local exhaustive
search procedure, it is normal that BFM has a better perfor-
mance than APAM in terms of performance degradation ratio.

4.3. Convergence Performance of APAM with Different
Extrapolation Step Size

In this subsection, we demonstrate empirically that APAM
is superior to PAM in both runtime and convergence per-
formance. Towards that end, we run APAM with θ =
0.25, 0.5, 0.75, 1 and PAM (which corresponds to APAM
with θ = 0) on different subsets of the real-world dataset
protein downloaded from LIBSVM under the same setting
as that in Section 4.1. We then compare the runtimes and
function values of these five settings of θ in APAM. As is
obvious from Fig. 3, the extrapolation step greatly acceler-
ates the algorithm, with θ = 1 being the most efficient and
accurate setting among the five.

5. CONCLUSIONS

In this paper, we proposed an efficient and high-accuracy first-
order method called APAM to solve the `1-PCA problem and
established its global convergence to a critical point by ex-
ploiting the KŁ-property of the problem. Moreover, our ex-
perimental results showed that the APAM method has great
potential when compared with existing algorithms in terms of
both computational efficiency and accuracy. An interesting
future direction would be to determine the convergence rate
of our proposed APAM method by further exploiting the KŁ
property; see [11, 12, 14, 13] for some related works.
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Fig. 1. Different first-order methods for `1-PCA with differ-
ent data samples: (a) Time comparison on dataset epsilon; (b)
function value comparison on dataset epsilon; (c) time com-
parison on dataset mnist; (d) function value comparison on
dataset mnist.
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Fig. 2. Performance degradation ratio of four suboptimal al-
gorithms for `1-PCA: In (a), the number of initialization is 5;
in (b), the number of initialization is 15.
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olation step sizes θ.
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