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ABSTRACT 
 
This paper presents an effort to classify Chinese speakers’ L1 
dialect regions from their L2 English speech. By applying 
LightGBM (a gradient boosting classifier based on decision 
trees) to softmax-based features from deep neural networks, 
our system achieved 68% accuracy on five dialect regions 
using one sentence and 82% accuracy using 23 words. The 
results represent a nearly 50% error reduction over a baseline 
system based on HMM/GMM and forced alignment. We 
demonstrated that modeling phone boundaries and vowel 
stress yielded a relative error reduction of 18%, with phone 
boundaries being more useful than vowels and consonants. 
Furthermore, in terms of classification models, LightGBM 
was extremely robust on this task, which we believe deserves 
further investigation. 

Index Terms— L2, accent, classification, softmax, 
LightGBM 
 

1. INTRODUCTION 
Foreign accent has been a topic of interest to researchers in 
many fields. In linguistics, people are interested in the 
phonetic and phonological characteristics of second language 
(L2) speech and the factors that influence degree of foreign 
accent, aiming to better understand the mechanisms of speech 
production/perception and second language learning [1,2]; in 
speech technology, the focus is more on automatic 
assessment and identification of L2 speech and accent, from 
the perspective of improving ASR (Automatic Speech 
Recognition) and CALL (Computer Assisted Language 
Learning) systems [3-9]. Relatively few efforts have been 
made to integrate the results of these two research areas. In 
this paper, we present a study on classification of Chinese 
dialect regions from L2 English speech, combining insights 
from both linguistics and speech technology research. 

Generally speaking, foreign accent results from the 
interference of the learner’s first language (L1). Differences 
in phonemic inventory between L1 and L2 may cause 
negative L1 transfer in L2 production. For example, making 
a distinction between /l/ and /r/ is often difficult for Japanese 
learners of English because the two sounds are not 
distinguishable in Japanese [10]. Characteristics of phoneme 
pronunciation, therefore, play an essential role in foreign 
accent identification [11]. Besides phonemes, phone 
boundaries also contain useful information about speech 
characteristics. For example, the timing of voicing in stop 
consonants, measured by voice onset time (VOT), is a 
boundary-bound phonetic feature that has been extensively 

studied in linguistics [12]. The VOT of stops varies across 
languages. Individuals who learn an L2 later in life often fail 
to produce consonants with authentic VOT values in L2 [13]. 
[14] demonstrated that phone boundaries were helpful in 
automatic assessment of spoken language proficiency. [15] 
showed employing a special HMM for phone boundaries 
significantly improved forced alignment accuracy. 

In L2 English, the placement and realization of lexical 
stress contribute to perceived proficiency and accent [16, 17]. 
Although lexical stress is suprasegmental and mainly realized 
on pitch, duration, and intensity, vowel quality and spectral 
characteristics also play an important role [18, 19]. [20] found 
that English unstressed vowels were produced more 
peripheral in the vowel space by late bilinguals of Spanish 
and English. Therefore, in automatic classification of L2 
English accents, it may be helpful to treat stress as a property 
of vowels in the acoustic models. 

We aim to automatically classify Chinese speakers’ 
dialect regions from their L2 English speech, by 
incorporating phone boundaries and lexical stress into a state-
of-the-art learning framework for the task. Compared to 
classification of native languages from L2 speech, 
classification of Chinese dialect regions is more challenging 
because of the impact of Mandarin [21]. Most Chinese 
speakers learned Mandarin in their childhood, and many 
speak Mandarin instead of the native dialect in their daily life. 
In this study, we obtain softmax-based features extracted 
from deep neural networks and employ LightGBM [22] 
classifier for dialect classification. Our experiments show 
significant error rate reduction compared to a baseline 
GMM/HMM approach. We also demonstrate the 
effectiveness of linguistically inspired features (stress and 
phone boundaries) and the LightGBM classification.  
 

2. DATA 
The dataset was compiled for a large-scale analysis of 
Chinese speakers’ L2 English speech, which contains 
approximately 1.4M utterances (1600 hours) collected 
through a mobile app. With the app, a user reads a sentence 
after listening to it from a L1 speaker, and receives an 
automatic assessment of his/her speech. The dataset has 123 
sentences and (on average) 12K speakers (mostly adults) per 
sentence, a total of 390K speakers from 120 cities in China. 
Based on our analysis of the data as well as Chinese 
dialectology, we grouped the 120 cities into five dialect 
regions (R1 to R5) as shown in Figure 1. 
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Figure 1. Chinese dialect regions: R1 (red), R2 (orange), and 
R4 (green) are different Mandarin dialects, R3 (yellow) 
includes Wu, Gan, Xiang, and some Mandarin dialects, and 
R5 (blue) mainly includes Min, Yue, and Hakka. 
 

3. EXPERIMENTS ON UTTERANCES 
3.1. Training and test division 
We divided the data into training and test sets based on 
speakers to ensure no speaker overlap between the two sets. 
50K speakers were randomly selected to form the test set, and 
the remaining were used for training. The distribution of the 
data on the five dialect regions is listed in Table 1.  

Table 1. The number of utterances in training and test sets. 
Dialect region Training set Test set 
R1 262,812 38,214 
R2 217,386 31,836 
R3 443,660 64,609 
R4 94,933 14,351 
R5 206,372 30,364 
Total 1,225,163 179,374 

 
3.2. GMM/HMM baseline 
A baseline system was built based on GMM/HMM and 
forced alignment. We trained five GMM/HMM acoustic 
models (of monophones plus phone boundaries), one for each 
dialect region using the training data of that region. Training 
was done with HTK [23], following the procedure in [15]. 
For every utterance in the test set, we ran forced alignment  

five times with the five acoustic models respectively, and 
selected the dialect region whose model had the highest 
alignment score. The overall classification accuracy on the 
test set was 33.3%.  

There were 123 unique sentences in the data. The 
number of utterances (i.e., speakers) per sentence in the test 
set ranged from 1,235 to 1,587, with an average of 1,458. The 
classification accuracies on the 123 sentences varied greatly, 
from 26.3% to 40.5%. The sentence with the best accuracy 
(40.5%) was I’m happy to have the opportunity to introduce 
myself here today, which had 1,490 utterances (speakers). 

3.3. Classification on softmax-based features 
We propose to use a classifier for this task. We trained a Kaldi 
TDNN (nnet3) model to extract softmax-based features for 
classification [24]. The training data for the TDNN model 
consisted of about 1K hours of LibriSpeech L1 English 
speech. One softmax vector was computed at the center of 
every phone, and one computed at every phone boundary, 
then all the softmax vectors in an utterance were concatenated 
to form a feature vector to feed into a classifier. Phone centers 
and boundaries were determined by the baseline 
GMM/HMM system. 

The LibriSpeech lexicon contains 69 phonemes, each of 
which has three HMM states, plus a “silence” phoneme with 
five HMM states. Therefore, the total number of HMM states 
(pdfs) in the model is 212, i.e., each softmax vector has 212 
dimensions. We then summed the softmax values for all the 
states of the same phoneme, which reduced the dimensions of 
each softmax vector to 70. The procedure is illustrated in 
Figure 2.  

 

 
Figure 2. Softmax-based feature extraction. 

 
For this experiment we only used the sentence with the 

best accuracy from the baseline system, “I’m happy to have 
the opportunity to introduce myself here today”. This 
sentence has totally 90 phones and boundaries (i.e., 90 
softmax-based vectors), therefore the feature vector has 6,300 
dimensions (90*70). There were 11,998 utterances of this 
sentence in the dataset (from 11,998 speakers), 10,508 in the 
training set and 1,490 in the test set. 

We compared three classifiers using the softmax-based 
features: SVM, MLP, and LightGBM. All classifiers were 
trained on the training utterances (10,508 utterances) and 
tested on the test utterances (1,490 utterances). The results 
showed that LightGBM was significantly better than the other 
two classifiers, with 8-10% absolute error reductions.  

With LightGBM, the classification accuracy on the test 
utterances was 68.4%, demonstrating an absolute error 
reduction of 27.9% and a relative error reduction of 46.9%  
over the baseline system. 
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4. EXPERIMENTS ON WORDS 
4.1. Data 
The classification experiment above was based on only one 
sentence. We expect the accuracy to be better when more 
sentences are used for a speaker. Unfortunately, there were 
not many speakers in the dataset who spoke the same two or 
more sentences. To overcome this problem, we constructed 
new training and test sets by selecting words from different 
utterances to form a sequence of words. In the new data, every 
word sequence consists of 23 words: morning, pleasure, sure, 
really, singer, right, night, tears, introduce, opportunity, 
agree, borrow, pencil, choose, about, song, never, favorite, 
throwing, butter, glad, afternoon, were. We randomly 
selected them from different utterances to form the word 
sequences for five dialect regions respectively. The new 
training set contained 9,480 word sequences and the test set 
contained 1,254 word sequences. These were formed 
respectively following the original training and test division. 

4.2. Effect of stress and phone boundaries 
To evaluate the effect of stress, we trained two TDNN models 
using the Librispeech data. The difference between the two 
models is whether vowel phonemes are stress dependent or 
independent. If vowels are stress-dependent, then /AA0/, 
/AA1/, and /AA2/, for example, are treated as three different 
phonemes, otherwise there is only one /AA/ phoneme. We 
note that schwa (AH0/AX) is an independent phoneme in 
both cases. Including silence, the stress-dependent phoneme 
set consists of 70 phonemes, and the stress-independent set 
consists of 41 phonemes. 

Softmax-based features were extracted in the same way 
as described in Section 3.2 on all utterances. Then the features 
of the selected words (from different utterances) were 
concatenated. In the 23 words we used, there were totally 105 
phones (43 vowels and 62 consonants) and 82 phone 
boundaries. Two sets of softmax features were extracted, one 
from phone centers only, and the other from both phone 
centers and phone boundaries. Between-word boundaries, 
i.e., phone boundaries between adjacent words, were 
excluded because words were randomly selected so the same 
word might precede or follow different phonemes. 

Overall, we created four sets of features on two aspects: 
stress vs. no stress, and phones vs. phones plus boundaries. 
The dimensions of these features are 4,305 (no stress, 
phones), 7,350 (stress, phones), 7,667 (no stress, phones and 
boundaries), and 13,090 (stress, phones and boundaries).  

LightGBM models were trained on the four feature sets 
respectively with the same parameter settings as follows: 
learning_rate=0.05, num_leaves=31 (max number of leaves 
in one tree), max_bin=255 (max number of feature bins), 
max_depth=-1 (no limit on tree depth), num_trees=5000 (the 
number of trees/iterations). The models were trained on the 
training data and tested on the test data. Because of the 
robustness of LightGBM on this task (discussed in detail in 
Section 4.5), no validation data were used for early stopping, 
and all models finished 5,000 iterations of training.  

Classification results on the four feature sets are listed in 
Table 2. We calculated two types of accuracies: 1-best 
accuracy: the best hypothesis is correct; 2-best accuracy: one 
of the two best hypotheses is correct.  
 
   Table 2. Classification accuracies (%): 1-best / 2-best. 

  phones  phones & boundaries 
no stress 78.2 / 94.4 79.8 / 95.8 
stress 78.6 / 94.7 82.1 / 95.7 

 
From Table 2, we can see that employing vowel stress 

and phone boundary features improved 1-best accuracy to 
82.1% from 78.2% when no stress or boundaries is used, i.e., 
a relative error reduction of 18% (from 0.218 down to 0.179), 
and improved 2-best accuracy from 94.4% to 95.7%, that is, 
an error reduction of 23%.  

With no stress, phone boundaries led to an improvement 
of accuracy from 78.2% to 79.8%, whereas with stress the 
improvement was much greater, from 78.6% to 82.1%. This 
result suggests that the characteristics of phone boundaries 
with respect to speaker accent are stress-dependent. For 
example, a phone boundary following a stressed vowel may 
bear more accent information than following an unstressed 
vowel. 

4.3. Confusion matrix results 
Table 3 is the confusion matrix of the best classification 
results on the test data (with stress and phones & boundaries 
information). We can see that dialect regions R1 and R2 were 
more confused by the classifier, as well as R3 and R4. The 
pattern is consistent with Chinese dialectology. If we merged 
R1 with R2, and R3 with R4, and perform three-way dialect 
classification, we found we can achieve a 1-best accuracy of 
92.4% and 2-best accuracy 99.9%. 
 

Table 3. Confusion matrix of classification results. 
 R1 R2 R3 R4 R5 
R1 234 23 8 0 2 
R2 62 103 45 4 6 
R3 3 6 432 4 4 
R4 0 4 33 54 3 
R5 0 0 16 1 207 

4.4. Importance of features 
LightGBM provides two metrics to measure the importance 
of features in a model: split – the number of times a feature is 
used to split the data; gain – the average information gain a 
feature has when used to split the data. 

Figure 3 compares the overall importance of vowels, 
consonances, and boundaries in the best model above (5 
dialect regions, stress, phone & boundaries) on the two 
metrics respectively, in which the totals of each category are 
shown. 
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Figure 3. The total importance of vowels, consonants, and 
boundaries on split and gain in the model.  
 

We can see that overall, phone boundaries are more 
important than vowels and consonants in terms of tree splits 
and information gain. We should also note that there were 
more phone boundaries (85) than vowels (43) and consonants 
(62) in each word sequence. 

The 10 most important phonemes/boundaries in the 
model on split and gain are listed in Table 4 respectively. For 
every phone and boundary, the split and gain values on all 
feature dimensions of the phone/boundary were totaled. If a 
phoneme/boundary had more than one token, we took the 
average of those tokens. Among the 20 most important ones 
shown in Table 4, 15 of them are phone boundaries (marked 
with a ‘-’ between two phones), suggesting that phone 
boundaries are more useful in this task. 
 
Table 4. Phonemes/boundaries with most splits and gain. 

Phonemes/ 
boundaries 

Number 
of splits 

Phonemes/ 
boundaries 

Information 
gain 

UW1-S 4549 B-AW1 13410.1 
SH-UH1 4242 UW1-S 10208.9 
N-T 2812 V-R 8701.1 
B-AW1 2808 SH-UH1 8325.8 
EY1 2791 EY1 7965.5 
W 2760 UH1-R 6368.7 
AO1-NG 2540 AY1 5371.7 
M-AO1 2451 N-T 4127.8 
UW1-Z 2426 F-EY1 3826.2 
UH1-R 2351 ER0 3521.1 

 
4.5. Robustness of LightGBM 

During the study we found that LightGBM was extremely 
robust to overfitting in our task. To test its robustness, we 
trained a LightGBM model (on the feature set with stress and 
phone boundaries, 13,090 dimensions) until no more leaves 
met the split requirements, with the same parameter settings 
as in Section 4.2.  

Figure 4 shows the training and test loss for the first 
5,000 trees/iterations. A number of representative loss values 
and classification accuracies are listed in Table 5. We can see 
that the test loss reached the minimum at 494 trees where the 
accuracy was 77.3%. After that, although the test loss was 

increasing, the test accuracy kept going up until stabilized at 
around 82.0%, which was significantly better than the 
accuracy corresponding to the minimum loss. The training 
terminated after 19,033 trees, when no leaves could be further 
split, with an accuracy of 82.0%. 

 
Figure 4. Training and test losses. 

 
Table 5. Loss values and accuracies on test set. 

Number 
of trees 

1-best 
accuracy 

2-best 
accuracy 

Test 
loss 

Train 
loss 

200 75.4% 93.0% 0.6888 0.1420 
494 77.3% 93.5% 0.5943 0.0096 
800 78.2% 93.9% 0.6281 0.0007 
2000 80.9% 95.0% 0.7519 8.1e-07 
5000 82.1% 95.7% 0.7603 2.8e-07 
19033 82.0% 96.3% 0.7616 1.8e-07 

 
The robustness of LightGBM on this task, including the 

substantial discrepancy between log loss and classification 
accuracy, deserves further investigation.  

 
5. CONCLUSIONS 

 
We applied LightGBM on softmax-based features extracted 
from deep neural networks to classify Chinese dialect regions 
from L2 English speech in a text-dependent manner. The 
results demonstrated that phone boundaries and vowel stress 
were useful on this task, with phone boundaries being more 
useful than vowels and consonants. Our system achieved 
68% accuracy on five dialect regions using one sentence and 
82% accuracy using 23 words. The results represent a nearly 
50% error reduction over a baseline system based on 
HMM/GMM and forced alignment. We found that the 
LightGBM classifier was extremely robust for this task. 
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