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ABSTRACT 
 

We present Neural Network (NN) approaches to the automated 
assessment of non-native spontaneous speech in a monologic task 
and a simulated dialogic task. Three attention-based Bidirectional 
Long Short-Term Memory (BLSTM) Recurrent Neural Networks 
(RNN) are employed to learn three dimensions (i.e., delivery, 
language use, and content) of scoring rubrics for the spoken 
responses. The prompts or turn history information are encoded to 
low-dimensional vectors by either a BLSTM-RNN or an end-to-end 
memory network (MemN2N) and used as the conditions of the 
inputs of the NN for rating the subscore of content. The three 
subscores are fused together to generate a holistic score. The 
experimental results show that our approaches significantly 
outperform the conventional approaches to speech scoring and the 
correlations of automatically predicted scores with the reference 
human scores are higher than human-human agreement levels for 
both tasks.    
 

Index Terms— automated speech scoring, LSTM, RNN, 
attention, end-to-end memory networks 
 

1. INTRODUCTION 
 

Automated systems for scoring non-native speech assess spoken 
language proficiency along several dimensions of communicative 
competence including delivery (pronunciation, stress, fluency, and 
intonation), language use (vocabulary and grammar), content 
(topical relevance and appropriateness), and organization (discourse 
structure and coherence). It is an attractive but challenging 
application of spoken language technologies. ETS’s SpeechRaterTM 
[1,2] is one such scoring application and has been used to score 
open-ended, spontaneous responses to assessments of English for 
academic purposes. Each spoken response is first processed by 
speech processing technologies, where the input speech is 
transcribed into a sequence of linguistic units (phonemes, syllables, 
and words) by automatic speech recognition (ASR), and the 
corresponding features, which can be used to assess pronunciation, 
stress, fluency, and intonation, are extracted via forced-alignment 
with the recognized hypotheses. The recognized word sequence is 
then fed into a natural language processing module to generate the 
features related to vocabulary, grammar, content, and structure. All 
the features are then used to predict a score using a scoring model 
trained (in the sense of supervised learning) on responses scored by 
humans. 

Recent advances in ASR and spoken language processing have 
led to improved systems for automated assessment of spoken 
language. Some lexical and syntactic features can be more 
accurately generated to address content appropriateness, topicality 
correctness, task completion, and pragmatic competence in some 
advanced automated speech scoring systems [3-10]. However, the 
features used in those advanced systems are still mostly handcrafted 

and aggregated (e.g. a bag of words), which cannot capture the 
nature of speech communication process, i.e., contextual 
information or temporal dynamics. In this paper, we use three 
BLSTM-RNNs for assessing spoken language proficiency in terms 
of delivery, language use and content, individually, and combine 
them together to predict a holistic score for a test taker’s response. 
To incorporate dialog history (multi-turn interaction) for contextual 
information, end-to-end memory networks (MemN2N) [19] are 
explored to grade spoken dialogue responses. 

 
2. RELATED WORK 

 

Recently there have been several studies [11-14] on investigating 
neural networks for modeling sequential data (such as word 
sequences) for automated written essay scoring that show better 
performance compared to conventional approaches based on 
engineered and aggregated features. In [11], a hierarchical 
convolutional neural network (CNN) architecture was employed and 
competitive performance was shown for in-domain and domain-
adaptation tasks. [12] found that a mean-over-time layer on top of 
an LSTM recurrent layer achieved the best performance among 
various neural network structures. A BLSTM-RNN with a weighted 
linear combination of two loss functions, score prediction and word 
embeddings, in multi-task learning was proposed in [13].  

To date, only a few studies have been conducted using 
sequential features for automatically assessing spontaneous speech. 
Siamese Convolutional Neural Networks (CNN) and neural 
attention-based response-prompt relevance model have been used to 
detect off-topic responses in automated speech scoring systems 
[15,16]. In our previous studies, 1) the abstractions learned by 
BLSTM-RNN from ASR-free low-level time-sequence features, 
such as frame-level MFCC and F0, are jointly optimized with ASR-
generated, aggregated features, such as the number of words per 
second, for predicting holistic scores of non-native spontaneous 
speech [17]; 2) two BLSTM-RNNs (one for the word embeddings 
of the recognized words, and other for word-level acoustic features, 
for example, word duration), were concatenated and fed into a linear 
regression layer for grading spoken responses [18]. The work 
presented in this paper focuses on investigating the different levels 
and the different contexts of sequential features for assessing the 
different dimensions of spoken language proficiency for both 
monologic and dialogic responses, which were not considered in the 
earlier studies. To the best of our knowledge, no work so far has 
studied using utterance history from the conversation on both sides 
for spoken language assessment.  
 

3. DATA AND TASK  
 

Two non-native spontaneous English corpora are used in this study. 
The first is drawn from the Listen Speak (LS) task of the TOEFL 
Junior Comprehensive assessment [20]. In this task type, the test  
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Fig.1: The neural network architecture for scoring spoken responses 
 
taker listens to an audio stimulus (approximately 2 minutes in 
duration) containing information about a non-academic topic (for 
example, a class field trip) or an academic topic (for example, the 
life cycle of frogs) and provides a spoken response that should 
contain pieces of information that were provided in the stimulus. 
Each speaker in this corpus provided two or three responses to LS 
tasks. The responses are approximately 60 seconds in duration and 
contain roughly 100-150 words on average. Each response is scored 
on a scale of 0-4 following scoring rubrics on content, delivery, and 
language. This corpus is hereafter referred to as the monolog corpus.  

The second corpus is also drawn from a pilot assessment of 
non-native English speaking proficiency for academic purposes. 
This assessment contained a task type in which the test taker is 
presented with a set of stimulus materials, such as a course schedule, 
an advertisement for a job on campus, etc., and is then presented 
with a series of spoken prompts from a computer-based interlocutor 
in the form of a simulated dialog. After each response from the test 
taker, the subsequent prompt from the computer-based interlocutor 
is played, until the final prompt has been reached. Expert human 
raters provided proficiency ratings on a scale of 0-5 for an entire 
simulated dialog based on the language learner’s spoken English 
proficiency and how well the task was completed. The corpus and 
scoring rubrics are described in further details in [6]. This corpus is 
hereafter referred to as the dialog corpus. 
 
4. NEURAL ARCHITECTURES FOR SCORING MODELS 

 

To model the evolution of the response over time, we formulate 
automated speech scoring as a time-series regression problem of 
predicting a score for a sequence of features extracted from a given 
utterance. RNNs [21] configured to process input sequences of 
arbitrary length and capture temporal dynamics have been 
successfully applied to solve a wide range of machine learning 
problems with sequential data. With LSTM cells [22], RNNs can 
overcome the vanishing gradient problem when the input sequences 
are long. Gated recurrent units (GRU) [26] can be an alternative to 
solve the vanishing gradient problem but their performance is 
inferior to LSTMs in our tasks. Similar findings are reported in [12].  
Recently, attention mechanisms have been shown to perform very 
well on many sequence-to-sequence mapping tasks such as speech 
recognition and machine translation [23,24]. The attention 
mechanism can be simply seen as a method for making the model 
focus on the states that are of high importance. Our previous work 
also shows that an attention-based BLSTM-RNN can outperform a 
CNN for end-to-end neural network based automated speech scoring 
[18]. We propose to use three attention BLSTM-RNNs to learn the 
mapping functions between the spoken responses and the three 

                                                
1 https://spacy.io/ 

dimensions (content, delivery and language use) of scoring rubrics. 
The schematic diagram of the proposed NN architecture for scoring 
spoken responses is shown in Figure 1. 

Language Use  Vocabulary, grammar and syntax related 
features extracted from ASR word hypotheses are generally used to 
measure the appropriateness of language use. The non-native ASR 
system used here was trained by using a large database, covering as 
many accents or L1s as possible, to recognize non-native speech. In 
[27], it is shown that syntactic, morphological and dependency-
related information about words provides useful information for 
word-level detection of grammatical errors made by machine 
translation systems. Inspired by this work, we concatenate multiple 
one-hot vectors representing Part-Of-Speech (POS), such as verb or 
noun, syntactic dependency labels (DEP) that describe the relations 
between words, such as subject or object, and morphology (Morph.) 
features obtained with spaCy1, a Python-based industrial-strength 
natural language processing tool.  Figure 2 shows an example of 
input features for the word ‘read’ to the NN of language use. In total, 
there are 19, 51 and 248 word-level labels for POS, DEP and 
Morph., respectively.  
 

 
Fig. 2: Binary vector for representing the features of POS, DEP, and 
Morph.  
 

Content  This aspect of the scoring rubric assesses the topical 
relevance and content appropriateness. The features used for the 
content NN are extracted from the word sequence recognized by the 
same non-native ASR system used for language use. We propose a 
prompt-aware BLSTM-RNN to content scoring, 

 

ℎ" = ℋ%&'((𝑊+,𝑥" +𝑊,,ℎ"/0 + 𝑏,)                    (1) 
 

𝑥"	= {𝑒"5, 𝑣8}                                         (2) 
 

where each word 𝑤"5 ∈ {𝑤05, 𝑤<5, … , 𝑤'5} or 𝑤"
8 ∈ {𝑤0

8, 𝑤<
8, … ,𝑤?

8} in 
the response or prompt (listening material) is mapped to word 
embedding, 𝑒"5 or  𝑒"

8, via the embedding layer, which is initialized 
by Google’s Word2Vec (300-dimensional vector) and optimized 
during model training; the word sequence contained in the prompt 
is encoded into a fixed length prompt-vector, 𝑣8, in a low-
dimensional space by a BLSTM-RNN; the prompt-vector,	𝑣8, is 
employed as a condition by appending to the word embedding, 𝑒"5, 
of the response and fed into a BLSTM-RNN layer. The prompt-
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aware NN approach only needs to train a generic model for the 
spoken responses to different prompts instead of prompt-specific 
models, i.e., the responses to each prompt in the training set are 
used to train a model. This approach effectively predicts the scores 
for the responses to the unseen prompts in the test set, i.e. the 
prompt has no corresponding responses in the training set, since it 
can learn commonalities across the training responses to different 
seen prompts and do interpolation for the unseen prompts.  

Delivery  It measures the pronunciation, stress, fluency, and 
intonation of spoken responses. The features to the inputs of the 
delivery NN are obtained via a forced alignment process, which uses 
native ASR model to align the recognition hypotheses generated by 
non-native ASR to audio recordings to automatically produce 
different level segmentation. The features include duration, pitch, 
intensity, following silence or pause length, posterior probabilities 
of AMs from both native ASR and non-native ASR, LM score from 
non-native ASR, and confidence score of non-native ASR. An eight-
dimensional continuous vector is employed to represent these 
features averaged by the frame length. In this study, the performance 
of the averaged features at phoneme, syllable and word levels will 
be tested.  

Generally, the first state, ℎ0, and the last state, ℎ', of the 
BLSTM-RNN is averaged as the final prediction. To utilize the 
information from the contextual states, i.e., time steps, ℎ",			"∈{0,<,…,'}	 
in both forward and backward directions, we add a feed-forward 
attention [25] layer to the outputs of the BLSTM for determining 
which states to pay attention to for the regression layer. It can 
produce a single vector 𝑧 from an entire state sequence as 

 

𝛼" =
expE𝛼(ℎ")F

∑ exp	(𝛼(ℎH))'
HI0

																														(3) 
 

 𝑧 =	∑ 𝛼"'
"I0 ℎ"                                    (4) 

 
where vectors ℎ"	 in the state sequence are fed into a learnable 
function 𝛼(ℎ") to produce a probability vector 𝛼 . The vector 𝑧 is 
computed as a weighted average of ℎ" , with weights given by 𝛼. It 
is implemented as a merged layer by applying the multiply operation 
on the outputs of the BLSTM layer and the outputs of the attention 
layer in Keras2. The mean of the merged layer is the predicted score 
for the response. Three subscores are concatenated together and fed 
into a dense layer to predict a holistic score to each response. 

The dialogue contains multi-turn interactions. Sometimes, it is 
difficult to understand the current utterance without the context in a 
conversation. To capture information about sequential utterances 
from both the prompt and the response, we propose to use a 
MemN2N, illustrated in Figure 3, where the attention to the 
contextual prompts and responses can be automatically learned in an 
end-to-end manner, for the content scoring of spoken dialogue 
responses. The MemN2N has been successfully applied to many 
tasks, modeling long-term dependencies in sequential data, such as 
question answering [19] and spoken dialogue understanding [28].  
Equation 2 is modified to 

 

𝑥"	= {𝑒"5	, 	𝑣8,  𝑎8 ∙ 𝑣,
8	, 𝑎5 ∙ 𝑣,5 }                     (5) 

 

where 𝑎8 and 𝑎5 are the attention vectors to the history prompts  𝑣,
8	 

and history responses 𝑣,5 . The model predicts a content subscore for 
each response in the dialogue. A single subscore for the entire 
conversation is obtained by averaging all subscores of the responses. 
The same strategy is applied to the subscores of delivery and 
language use. 
                                                
2 https://keras.io/ 
3 https://github.com/EducationalTestingService/skll 

 

 
 

Fig.3: The end-to-end memory networks (MemN2N) for content 
scoring of spoken dialogue responses 
 

5. EXPERIMENTS 
 

5.1. Experimental Setup 
 

The monolog corpus contains 8,738 responses from 3,225 test takers 
from 14 native language backgrounds (L1s). The dialog corpus 
consists of 1,847 conversations (10,865 responses) from 1,847 test 
takers representing 51 L1s. The scores are rated by at least 2 experts. 
A third or fourth opinion is given when the scores from those two 
experts are different. The final adjudicated scores are used as the 
reference scores to build the scoring model. Responses scored with 
zero are generally non-English responses, off-topic responses, or 
responses with no intelligible speech. Both corpora are divided into 
training and test sets (with no speaker overlap) for the current study. 
The corresponding number of speakers and the number of responses 
are presented in Table 1. 
 
Table 1: Number of speakers and number of responses for each data 
partition 
 

Partitions Monolog Dialog 
Speakers Responses       Speakers Responses 

Train 2,511 6,635 1,567 9,380 
Test 714 2,103 280 1,485 

 
Two non-native ASR systems are used to generate recognized 

hypotheses for monolog and dialog corpora. AMs were trained by 
iVector-based BLSTM-RNNs with 160 hours and 800 hours of non-
native speech recorded by 1,600 children and 8,700 adults 
worldwide. The LMs are adapted using the task prompts. The details 
about the construction of these two ASR systems and system 
performance are presented in [5, 10]. A native AM trained by 
LibriSpeech [29] (containing approximately 960 hours of speech 
collected from 2,338 speakers) is employed for the forced-alignment 
with the recognition hypotheses for generating delivery features. 
The recognition hypotheses of spontaneous speech contain filler 
words and repeated partial words. These were removed to generate 
language use and content features but retained for precise forced-
alignment to produce delivery features. 

 The baseline system is built with the features extracted using 
SpeechRater [1], a conventional automated speech scoring engine. 
There are over 100 features covering fluency, rhythm, intonation, 
stress, pronunciation, grammar, vocabulary use, content and etc., 
which are mostly aggregated over a whole response, e.g., speaking 
rate, number of chunks, global AM and LM scores (normalized), 
Content Vector Analysis [6]. A detailed description of these features 
is provided in [1,30]. The different regression methods provided by 
the SKLL3 toolkit, including Logistic Regression, AdaBoost, 
Decision Tree, Gradient Boost, Support Vector Machine, Random 
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Forest, etc., were employed to build scoring models. The hyper-
parameters of these regressors were optimized by SKLL internally 
via cross-validation on the training set. Among all these regressors, 
the Random Forest Regressor achieves the highest performance. We 
hereafter use the predictions from Random Forest Regressor as the 
output of the baseline system.  

The neural approaches and the features introduced in Section 4 
are used to build the neural-based scoring systems. The Adam 
optimization algorithm is used to update the network parameters 
towards minimizing the loss function of mean squared error (MSE) 
between the predicted scores and reference scores over the training 
set. We shuffle the training samples and select 20% of them as a 
development set. Instead of using early stopping methods, we train 
the model for a fixed number of epochs. We set model checkpoints, 
i.e., we save the model weights after each epoch if the performance 
of the model on the development set is improved, and store them in 
a callback list during training. We select the model with the best 
performance in the callback list as the final model. To avoid 
overfitting, we employ dropout (with p=0.5). The number of units 
for BLSTM is 128; A batch size of 64 samples is used in each epoch; 
100 epochs are used for model training; The memory size of 
MemN2N is 20 to store carried information from previous 10 turns 
of prompts and responses.   
 

5.2. Results and Discussion 
 

The performance of automated speech scoring system is evaluated 
using Pearson correlations between the predicted scores and the 
reference scores. The predicted scores produced by the systems are 
continuously valued scores while the human experts rate the spoken 
responses using scoring rubrics on a discrete point scale. We round 
the scores generated by the systems to the nearest integers and then 
calculate their correlations with human scores. 
 
Table 2: Correlations of automatically predicted subscores by 
different NN-based models with reference scores across different 
tasks 
 

 Delivery Lang  
use 

Content 
Phn Syl Word w/o	𝑣8 w/ 	𝑣8 

Mono 0.531 0.565 0.553 0.656 0.709 0.723 
Dial 0.570 0.591 0.579 0.676 0.713 0.741(0.749) 

 
Table 3: Correlations of the holistic scores predicted by baseline 
systems and neural-based systems with reference scores across 
different tasks  
 

 Baseline Neural Human-Human 
Mono 0.684 0.747 0.715 
Dial 0.691 0.772 0.702 

 
We observed that adding an attention layer after the LSTM 

layer brings a substantial performance improvement, i.e., the 
increment in the correlation coefficients ranges from 0.01 to 0.05 
across different NN-based subscore models of monologic and 
dialogic tasks. Due to the limited space, the detailed results of the 
comparison for with or without attention layer are not listed here. 
Table 2 shows the performances of the different attention BLSTM-
RNNs for modeling subscores, Delivery, Language use, and 
Content, with different-level inputs, Phone, Syllable and Word, or 
different conditions, without or with prompt-encoder (MemN2N 
encoder), across different tasks, monolog and dialog. The 
performance of predicted subscores is also measured by their 
correlations with the holistic reference scores since there are no 
responses with manually marked subscores in both corpora.   

Delivery  The syllable-level features outperform the phone-
level features and word-level features for predicting delivery 
subscore for the testing sets of both monolog and dialog corpora. 
Here the delivery feature like LM score for syllable or phone is 
employed the LM score of the word which syllable or phone belongs 
to. The syllable, which is typically made up of a vowel with the 
optional proceeding and succeeding consonants and has relatively 
invariant duration, can be used to calculate speaking rate more 
precisely over the word.  The syllable is also the unit that carries 
stress, which influences the rhythm or prosody to help deliver the 
information to the audience.  

Language Use  The subscores predicted from the attention 
BLSTM-RNN with word-level POS, DEP and Morph in a binary 
vector representation have correlations of 0.656 and 0. 676 with the 
reference scores for the responses of monolog and dialog, 
separately. Word embeddings are also useful to capture the lexical 
and syntactic information. Here our assumption is that POS, DEP 
and Morph labels can strip out the semantic (or content) information 
contained in the word embeddings and is thus more focused on 
language use like grammar.  

Content  Using the vectors produced by prompt-encoder as 
conditional inputs (by appending to word embeddings) to attention 
LSTM-RNN can improve the performance of content grading, i.e., 
the correlations are improved from 0.709 to 0.723 for monolog and 
from 0.713 to 0.741 for dialog. The MemN2N can further improve 
the correlation coefficient to 0.749 for dialog. We find that the 
prompt information contributes more in the dialog than in the 
monolog to distinguish between the high-scoring samples and low-
scoring samples. In addition, we observed that word embeddings 
refined in the training of scoring model can slightly outperform the 
fixed embeddings. 

Table 3 presents the correlations of the holistic scores predicted 
by baseline systems and neural-based systems with reference scores. 
The correlation improvements achieved by our proposed neural 
approaches are 0.063 and 0.081 over the baseline for monolog and 
dialog, respectively. The improvements are significant, i.e., the z-
scores of Steiger’s z-test [31] achieve 4.26 and 2.17. The 
correlations between the automated scores and expert scores are now 
superior to the human-human agreement levels for both tasks. The 
results shown in Table 3 are obtained by combining three subscore 
NNs at the last output layer. We also tried merging them at the first 
layer or the middle layer. The preliminary results show that the 
fusion of input features can slightly outperform that of final outputs 
in terms of generating holistic score since the relations of the input 
features across different dimensions can also be learned by NN. 
However, it cannot address the appropriateness of the different 
aspects of spoken language proficiency, represented by subscores. 
 

6. CONCLUSIONS 
 

In this paper, we have proposed using various neural approaches: 
attention, BLSTM-RNN, encoder, MemN2N, and conditional 
inputs, for automated grading of spoken monolog and dialog 
responses. Our approaches can capture the evolution (or trajectory) 
of the input features, such as sequential word embeddings and 
sequential acoustic vectors. They show a superior scoring 
performance compared to the traditional approaches, which are 
limited by conventional machine learning methods and only can use 
handcrafted aggregated features over the whole response or have to 
normalize the variable-length feature sequence to a fixed length. In 
the future, we will improve the interpretability of neural networks 
for revealing what these scoring models are really learning and thus 
investigate the potentials to provide diagnostic targeted feedback, 
e.g., which word is mispronounced or has a grammatical error. 
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