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ABSTRACT

The problem of correcting power network parameters and
topology using multi-period SCADA measurements is con-
sidered. Starting from the current knowledge of parameter
values, we formulate the parameter correction problem as
a sparse unsupervised regression problem by exploiting the
sparsity of the parameter errors. The advantage of the pro-
posed approach is that it can localize and estimate parameter
errors at the same time; there is no need for prior knowledge
of error locations. Furthermore, the approach can be adapted
to correct sparse errors in both parameters and topology si-
multaneously. We present an iterative parameter correction
algorithm and demonstrate its efficacy using the IEEE 14-bus
test case.

Index Terms— Power system parameter estimation, un-
supervised regression, sparse error correction

1. INTRODUCTION

Accurate modeling of the power system is essential in power
flow analysis. In particular, it is essential to have correct
topology information and estimates of power network line
parameters such as series impedance and shunt admittance.
Working with incorrect network parameters may result in big
errors in state estimation, suboptimal dispatch and control de-
cisions, and so on. In practice, line parameter values available
to power system operators may contain some errors due to
several factors including errors in the parameter data provided
by manufacturers, use of an incorrect model for parameter
calculation, uninformed network changes, and severe weather
conditions [1]. Therefore, it is important to equip power sys-
tems with the capability to identify and correct errors in power
network parameters.
Problem Description We consider the problem of correct-
ing parameter values based on multi-period SCADA measure-
ments. Starting from the current knowledge of parameters de-
noted by β0 ∈ Rl, our objective is to estimate the parameter
error ∆β , β−β0 whereβ denotes the true parameter value.
We assume that ∆β is a sparse or compressible vector, i.e.,
only few parameters contain significant errors. The sparsity
of parameter errors is a reasonable assumption that has been

popularly employed, either implicitly or explicitly, in power
network parameter estimation literature [1–3].

We formulate the sparse parameter correction problem as
a sparse unsupervised regression problem. Specifically, we
aim to estimate sparse ∆β from the set of SCADA measure-
ments

y(i) = γ(x(i);β0 + ∆β) + v(i) i = 1, . . . ,M (1)

where y(i) ∈ Rm, x(i) ∈ Rn, and v(i) ∈ Rm are the SCADA
measurement vector, the state vector, and the noise vector for
the i-th measurement period, and γ(x;β) is the measurement
function that maps the state vector x to the corresponding
measurement vector when the parameter is β. This problem
is unsupervised in that the state vectors x(i)’s are unknown.
It can be easily shown that without the sparsity constraint on
∆β, the above problem becomes ill-posed, i.e., ∆β is funda-
mentally not identifiable from the measurements. Therefore,
sparsity of ∆β is an essential condition.
Summary of Contributions In this paper, we formulate the
parameter correction problem as a sparse unsupervised re-
gression problem as described above and develop a sparse op-
timization framework to find an estimate of ∆β. We develop
an iterative reweighted algorithm to find a local optimum of
the sparse optimization problem. We demonstrate the efficacy
of this method by evaluating its performance in parameter and
topology correction for the IEEE 14-bus test case [4].
Related Works Existing approaches on power network pa-
rameter estimation can be categorized into two groups. The
first is online local parameter estimation methods that aim
to estimate parameters associated with certain line using the
π model, the wave propagation model, and local meter data
[5–11]. These methods can provide an accurate real-time pa-
rameter estimate, but their limitation is that they typically
require certain types of meters to be located at specific lo-
cations. On the other hand, the second group is network-
wide parameter estimation approaches that leverage SCADA
or PMU measurements and the state estimation model to in-
fer line parameter values [12–17]. For instance, the state
augmentation methods leverage the existing state estimation
framework to estimate parameter errors by considering uncer-
tain parameter values as additional variables of the state esti-
mation problem [13–15]. Their main limitation is that they
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require prior knowledge of suspected locations of parame-
ter errors. In order to overcome this issue, Lagrange multi-
pliers based methods have been proposed in [2, 16, 17]; the
approaches analyze the Lagrange multipliers of parameter-
related constraints in state estimation to localize parameter
errors.

In contrast to benchmarks [12–16], our network-wide pa-
rameter estimation approach exploits the sparsity of parame-
ter errors to enhance the error correction performance. An-
other difference is that our approach can be adapted to correct
errors in parameters and topology simultaneously. This aspect
makes our approach more robust than existing benchmarks;
most benchmarks assume and rely on the accurate knowledge
of topology in correcting parameter errors.

2. PROBLEM SETUP

Notations Throughout this paper, vectors are represented by
boldface lower case letter (e.g., x). The i-th entry of the vector
x is denoted by xi. The set of all n dimensional real positive
vectors are denoted by Rn+. The sign operator is denoted by
sign, that is

sign(t)

{
1 if t ≥ 0,

−1 otherwise.

Parameter Correction as Sparse Unsupervised Regression
The measurement equation (1) can be simplified as follows by
defining g(x(i); ∆β) , γ(x(i);β0 + ∆β):

y(i) = g(x(i); ∆β) + v(i) i = 1, . . . ,M. (2)

We assume that the parameter error vector ∆β is sparse (or
compressible), i.e., only few parameters have significant er-
rors. Given the set of measurements {y(i), i = 1, . . . ,M},
our objective is to estimate the sparse ∆β. Note that this
problem can be seen as fitting the range of g(·; ∆β) to the
cloud of data points {y(i), i = 1, . . . ,M} while constraining
∆β to be sparse. This regression problem is unsupervised in
a sense that x(i)’s are unknown. To estimate the sparse ∆β,
we aim to find ∆β that minimizes the fitting error while reg-
ularizing the lp norm of ∆β with p ∈ (0, 1):

min
∆β

(
M∑
i=1

min
x̄(i)
‖y(i) − g(x̄(i); ∆β)‖22 + λ · ‖∆β‖pp

)
(3)

where minx̄(i) ‖y(i)−g(x̄(i); ∆β)‖22 is the squared Euclidean
distance from y(i) to the range of g(·; ∆β).

3. PROPOSED APPROACH

The sparse unsupervised regression problem (3) can be
rewritten as follows by explicitly including x̄(i)’s as opti-
mization variables:

min
z

{
F (z) = f(z) + λ‖∆β‖pp

}
(4)

where z , [∆β, x̄(1), . . . , x̄(M)]T ∈ Rl+nM and

f(z) ,
M∑
i=1

‖y(i) − g(x̄(i); ∆β)‖22

Instead of (4), we solve its ε-approximation, for which we can
develop a simple iterative reweighted algorithm:

min
z

{
Fα,ε(z) = f(z) + λ

l∑
i=1

[
|∆βi|α + ε

] p
α

}
(5)

where ε ∈ R+ is very small constant and α ≥ 1.

3.1. Overview of the Approach

The proposed approach consists of two steps.
1. Sparse Unsupervised Regression First, we solve (5) to
find a sparse ∆β that fits the measurement data well. To solve
(5), we use the iterative reweighted algorithm to be described
in Section 3.2.
2. Bias Correction The least square estimate with the lp
norm regularization is often biased. Therefore, instead of ac-
cepting ∆β as it is, we correct the bias in this estimate as
follows. We compare the magnitude of each entry of ∆β to
a small threshold δ to detect the nonzero entry locations of
∆β; let S denote the set of detected nonzero row indices.
Then, we solve the following least squares problem with the
support constraint to obtain a new estimate of ∆β:

min∆β,x̄(1),...,x̄(M)

∑M
i=1 ‖y(i) − g(x̄(i); ∆β)‖22

subj. to ∆βi = 0 for i /∈ S.

3.2. Iterative Reweighted Algorithm for Regression

Lu in [18] proposed the IRLα minimization algorithm to
solve an lp regularized unconstrained nonlinear problem with
very mild condition on regression function, which is

min
z

{
Pα,ε(z) = f(z) + λ

l+nM∑
i=1

[
|zi|α + ε

] p
α

}
(6)

where f(z) is a smooth function with Lf - Lipschitz continu-
ous gradient. We adapted this algorithm to solve our problem
(5) wherein, unlike (6), the lp norm of only partial entries of
z, especially that of ∆β, are regularized; state vectors are not
sparse. Therefore, we modified the algorithm in [18] to solve
(5) with the sparsity regularization on a subset of variables.

Initialize: α ≥ 1, 0 < Lmin < Lmax, τ > 1, p ∈ (0, 1),
c, ε,Kmax, ζ ∈ R+, z0 ∈ Rl+nM is given. Set k = 0

1) Choose L0
k ∈

[
Lmin, Lmax

]
arbitrarily, set Lk = L0

k

8108



1a) solve the weighted lα minimization problem

zk+1 = argmin
z∈Rl+nM

{
f(zk)+∇f(zk)T (z−zk)+

Lk
2
‖z−zk‖22

+
λp

α

l∑
i=1

ski |∆βi|α
}

(7)

where ski =
[
|∆βki |α + ε

] p
α−1

, for i = 1, . . . , l

1b) If

Fα,ε(zk)− Fα,ε(zk+1) ≥ c

2
‖zk+1 − zk‖22 (8)

then go to step 2. Otherwise, go to 1c).
1c) set Lk ← τLk and go to Step 1a)

2) If k < Kmax and ‖zk+1 − zk‖∞ ≥ ζ, set k ← k + 1 and
go to Step 1; otherwise, return z∗ ← zk+1 and terminate.

3.3. Solving Sub-problem (7)

When α is 1 or 2, we can derive a closed-form solution for
sub-problem (7) in a similar way as it was done in [19]. After
removing the constant terms, equation (7) can be written as
follows.

zk+1 = argmin
z∈Rl+nM

{
1

2
‖z− uk‖22 +

λp

αLk

l∑
i=1

ski |∆βi|α
}

where uk = zk − 1

Lk
∇f(zk). As the objective function is

separable, zk+1 can be computed per entry as follows: zk+1
i

isargmin∆βi∈R

{
(∆βi − uki )2

2
+

λp

αLk
ski |∆βi|α

}
, if 1 ≤ i ≤ l

uki , o.w
(9)

Note that when α = 2, the minimization for 1 ≤ i ≤ l is
simply minimization of a second-order polynomial. When
α = 1, it is well known that this minimization has a closed-
form solution involving a soft-thresholding operator:

argmin
∆βi∈R

{
(∆βi − uki )2

2
+
λp

Lk
ski |∆βi|

}
= soft

(
uki ,

λpski
Lk

)
(10)

where soft(u, a) , sign(u) max{|u| − a, 0}.

3.4. Convergence Analysis

Following the same steps as the convergence analysis of the
iterative reweighted algorithm in [18], we can derive the fol-
lowing convergence property of our iterative reweighted algo-
rithm. The proof is omitted due to the page limit.

Theorem 1. Assume that the function f(z) has Lipschitz con-
tinuous gradients with some finite Lipschitz constant Lf . Let
{zk} be the sequence generated by the above algorithm. Let
z∗ be any limit point of {zk}. Then z∗ is a first-order station-
ary point of (5)

3.5. Correction of Parameter and Topology Errors

The proposed method can be adapted to handle errors in pa-
rameters and topology simultaneously. This can be achieved
by redefining the parameter vector β to include the param-
eter values of all transmission lines, both energized and de-
energized (redefine β0 and ∆β accordingly as well). The
entries in the true parameter vector β for de-energized lines
will be zero indicating that the effective admittance of the
de-energized lines is zero. In that sense, the power network
topology is encoded into the support of β, and ∆β can rep-
resent topology errors and parameter errors at the same time.

For instance, suppose that our current knowledge of topol-
ogy is that a certain line is de-energized although the line is
actually energized. The parameter values for this line in β0

will be all zeros as we are perceiving the line as disconnected.
However, the corresponding parameter values in the true pa-
rameter vector β will be nonzero as the line is actually con-
nected. Thus, a topology error contributes to ∆β = β − β0

in a similar way as parameter errors, and the error can be es-
timated and corrected by our approach.

4. EXPERIMENTAL RESULTS

We evaluated the proposed method using the IEEE 14-bus test
case [4] in the following two scenarios.
Scenario 1 First, we assumed that we have measurements
of power flows (both directions) and power injections from
80% of branches and buses. For measurement noise, we
used Gaussian noise with zero mean and standard deviation
σ = 0.005. In each Monte Carlo run, ten parameter entries
were randomly chosen1 among all nonzero parameters, and
we changed their values by 20% error to create our current
knowledge of parameter values, i.e., β0. In other words, our
current knowledge of parameters has errors at ten parameters,
and the error magnitude (in percentage) is set to 20%.
Scenario 2 In the second scenario, there exist topology er-
rors and parameter errors at the same time. We assumed that
two transmission lines are perceived as de-energized in our
current topology information even though they are actually
energized. In this scenario, we evaluate the adapted version
of our method for simultaneous correction of topology and
parameter errors as described in Section 3.5. We assumed

1Parameter values associated with the line between bus 7 and bus 8 were
excluded. Because, an error in these parameters are fundamentally not iden-
tifiable based on SCADA measurements and state estimation model; this is
due to that bus 8 is connected only to 7, but no other buses.
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that we have measurements of power flows and power injec-
tions from 80% of branches and buses; we assumed no line
flow meter on the two lines associated with the topology in-
formation errors in order to keep the problem non-trivial. Five
parameter entries were randomly chosen similar to Scenario
1, and 20%-magnitude errors were introduced to the selected
entries to form the erroneous current knowledge of the param-
eters.
Sparse Unsupervised Regression Algorithm For the ini-
tial point of our iterative algorithm, we perturbed the nomi-
nal operating state for state entries (i.e., magnitude one and
phase angle zero) with Gaussian noise of zero mean and 0.01
standard deviation, and we sampled zero mean independent
Gaussian random variables with standard deviation 0.001 for
∆β entries. The algorithm parameters were set as follows:
p = 0.9, α = 1, ε = 10−5, Lmin = 10−8, Lmax = 108,
c = 10−4, τ = 3, Kmax = 104, ζ = 10−12, δ = 0.001 and
L0

0 = 1. For each k, L0
k is set to

L0
k = max

{
Lmin,min

{
Lmax,

∆zT∆b
‖∆z‖22

}}
(11)

where ∆z = zk−zk−1 and ∆b = ∇f(zk)−∇f(zk−1). This
is the setting suggested for the iterative reweighted algorithm
in [18] from which we derived our iterative algorithm.

As expected, the algorithm performance depends on the
regularization parameter λ. To choose a proper λ, we started
with a sufficiently large λ and decreased λ until the least
squares estimation residue from the bias correction step
passes the corresponding χ2 test with the false alarm rate
0.99 (the same as the one described in [20]); the fact that the
residue passes the χ2 test implies that all error locations were
taken into account in the bias correction step. We chose the
largest λ, with which the estimation residue passes the χ2

test. In this way, we can prevent our approach from falsely
including unnecessarily many parameter error locations in the
bias correction stage. For the experiments, we chose λ from
a predefined set: (10, 1, 0.1, 0.05, 0.01).
Evaluation Metric We consider the following performance
metrics:

Mean squared error = E
[
‖β − β̂‖22

]
Normalized L∞ error = E

[ 1

C
‖β − β̂‖∞

]
Normalized mean absolute error = E

[ 1

C

(‖β − β̂‖1
l

)]
where β̂ denotes the parameter estimate (obtained according
to the estimate of ∆β) and C , ‖β‖1/‖β‖0 is the average
absolute value of nonzero parameters.
Results Table 1 provides the performance metrics of the pro-
posed sparse unsupervised regression approach and the nor-
malized Lagrange multiplier method proposed in [2] for Sce-
nario 1. The results are based on 10 Monte Carlo runs, and

Proposed Approach Lagrange
MSE 1.60× 10−3 1.46× 10−2

(σ= 1.80× 10−3) (σ= 1.75× 10−2)
L∞ error 7.00× 10−3 1.81× 10−2

(σ= 5.70× 10−3) (σ= 1.06× 10−2)
MAE 3.20× 10−4 1.1× 10−3

(σ= 1.66× 10−4) (σ= 7.94× 10−4)

Table 1. Performance metric for Scenario 1

(No.Measurements) 100 200
MSE 8.00× 10−3 8.91× 10−4

(σ= 1.98× 10−2) (σ= 3.63× 10−4)
L∞ error 1.19× 10−2 5.20× 10−3

(σ= 1.65× 10−2) (σ= 1.50× 10−3)
MAE 5.72× 10−4 2.95× 10−4

(σ= 5.10× 10−4) (σ= 5.08× 10−5)

Table 2. Performance metric for Scenario 2

both approaches used measurements from 100 periods, i.e.,
M = 100. The table also provides standard deviation σ of
10 error values that were used for computing the mean met-
ric. While the Lagrange multiplier method performed rea-
sonably well, our proposed approach outperformed it and re-
sulted in a smaller mean and standard deviation in every error
metric we considered. We observed that when the measure-
ment redundancy is higher or the number of parameter errors
is much lower, both approaches demonstrated quite similar
performance. However, when the measurement redundancy
is not high and the number of parameter errors is not so small
(as in Scenario 1), our approach exploiting the sparsity of pa-
rameter errors outperformed as shown in Table 1. Roughly
speaking, the normalized l∞ error gives the maximum param-
eter error among all parameter entries, in percentage. Even
with ten parameter errors, our approach estimated the param-
eters with normalized l∞ error equal to 0.007, which means
that the worst parameter error among all parameter entries is
roughly about 0.7 percent in the percentage error.

Table 2 illustrates the results for Scenario 2 for sparse un-
supervised regression algorithm. The proposed method was
able to correct 5 parameter errors and two line connectivity
errors at the same time. When measurements from 200 pe-
riods were used, the proposed method resulted in the worst
parameter error (among all parameter entries) about 0.52 %.

5. CONCLUSION

A novel sparse unsupervised regression method is proposed to
correct line parameters and topology by exploiting the spar-
sity of the parameter error vector. By incorporating sparsity,
we envision that the proposed method would perform better
than existing benchmarks especially when the number of pa-
rameter errors is moderate. A thorough comparative study of
the proposed method and other benchmarks has to follow.
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