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ABSTRACT
Smart grid has attracted increasing attention in the past
decade, and one of its common problems is the variation
of the nominal frequency (50 or 60 Hz) introduced by har-
monics. In this paper, a batch-mode frequency estimator that
can accurately obtain the deviation from the nominal fre-
quency is proposed. The signal model, which includes not
only the fundamental frequency but also the harmonics, is
first defined, and its characteristic is then studied. Employing
the linear prediction (LP) property of the model, the deviated
frequency is iteratively updated according to the weighted LP
errors, to achieve accurate fundamental frequency estimation.
Computer simulations indicate that our proposed method is
more accurate and reliable than the conventional estimators
in the presence of harmonics and amplitude oscillation.

Index Terms— Unbalanced three-phase power system,
frequency estimation, harmonics, generalized weighted linear
prediction, batch-mode

1. INTRODUCTION

Due to high efficiency and reliability, smart grid [1] has at-
tracted much attention. Different from the traditional power
system, smart grid is a mesh network [2], whose nodes can
be both user terminals and power generators. Although smart
grid improves the utilization efficiency of electricity, it also
causes many problems in power system, such as the harmon-
ics, unbalanced voltages and current oscillation [3]. All these
problems result in the resonance and overheating of electri-
cal equipments. Among these interferences, the third and
fifth harmonics [4] are most commonly confronted and dif-
ficult to avoid, and a fluctuation of nominal frequency is then
produced, leading to the asynchronism and instability of the
whole electrical system. To ensure the stability, monitoring
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the change of frequency in the presence of the interferences
is a crucial task in smart grid. Therefore, accurate frequency
deviation estimation [5] in the case of harmonics or amplitude
variation becomes very important.

Among numerous estimators developed in the literature,
the well-known frequency estimation techniques include the
complex least mean square (CLMS) [6] and augmented com-
plex least mean square (ACLMS) [7], which can provide the
real-time estimation. However, in the presence of harmon-
ics or amplitude oscillation, the performance of these meth-
ods is not satisfactory since the gap between the estimates
and true values becomes large as time goes on. Furthermore,
an accurate estimator, namely, the iterative adaptive approach
(IAA) [8] is developed. However, since grid search on [0, 2π)
is required, this method suffers from very high computational
complexity, particularly for a large number of grid points.

In this work, an accurate and stable frequency estimator is
devised. Since at a fixed time index, we employ a sliding win-
dow to collect the current and its previous measurements, our
method can be regarded as a batch-mode algorithm. To deal
with the harmonics, we define a new signal model, where the
third and fifth harmonics are considered as the signal. Em-
ploying the αβ-transformation, the new signal model can be
regarded as the linear combination of three complex tones.
The linear prediction (LP) property of the multiple tones is
first studied, while the generalized weighted linear prediction
(GWLP) [9]– [11] is utilized to estimate the frequency accu-
rately. To guarantee the accuracy of our proposed scheme,
the estimates at a fixed time index t is obtained according to
a batch of observations.

The rest of this paper is organized as follows. Our new
signal model is first described in Section 2, and the proposed
algorithm is then developed. To demonstrate the performance
of the proposed method, computer simulation results are stud-
ied in Section 3 in the presence of harmonics and/or amplitude
oscillation. Finally, conclusions are drawn in Section 4.
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2. PROPOSED METHOD

Without loss of generalization, in the unbalanced three-phase
system, the observation at time slot tn is modeled as [7]:

ua[n] = Va cos (2πftn + φ) + ηa[n], (1)

ub[n] = Vb cos

(
2πftn + φ− 2π

3

)
+ ηb[n], (2)

uc[n] = Vc cos

(
2πftn + φ+

2π

3

)
+ ηc[n], (3)

where Va, Vb and Vc denotes amplitudes corresponding to dif-
ferent phase components, f is the unknown fundamental fre-
quency whose nominal value is 50 (or 60) Hz, tn = n/Fs, Fs

denotes the sampling frequency in Hz, φ denotes the initial
phase. Here the system is balanced when Va = Vb = Vc,
and unbalanced otherwise. The ηa[n], ηb[n] and ηc[n] are
independent and identically distributed noise sequence fol-
lowing white Gaussian distribution with unknown equivalent
variance σ2 [12]. The task is to find the unknown f from
observations {ua[n]}N−1n=0 , {ub[n]}N−1n=0 and {uc[n]}N−1n=0 .

Employing the αβ-transformation [13], the three se-
quences on (1)–(3) can be combined into a complex-valued
voltage signal, which is expressed as:

un = sn(ω) + qn, (4)

where sn(ω) = A exp{j(ωn + φ)} + B exp{−j(ωn + φ)},
ω = 2πf/Fs is the discrete frequency in rads−1, qn denotes
the complex noise term, and

A =

√
6(Va + Vb + Vc)

6
, (5)

B =

√
6(2Va − Vb − Vc)

6
− j
√
2(Vb − Vc)

4
, (6)

<{qn} =
√

2

3

(
ηa[n]−

1

2
ηb[n]−

1

2
ηc[n]

)
, (7)

={qn} =
√
2

2

(
ηb[n]− ηc[n]

)
, (8)

with <{·} and ={·} denoting the real and imaginary opera-
tors. Based on (7)–(8), E{<{qn}={qn}} = 0 where E{·}
denotes the expectation operator, and hence qn are uncorre-
lated [14]. Here the estimation problem is to obtain ω from
{un}N−1n=0 .

As we have known that in smart grid, the balanced third
harmonic and fifth harmonic of the fundamental frequency ω
arise commonly and cannot be avoided. Therefore, combin-
ing the harmonic components, we define a new signal model
which is

vn = sn(ω) + µ1sn(3ω) + µ2sn(5ω) + qn, (9)

where µ1 and µ2 are the coefficients of third and fifth har-
monics, respectively.

As the new vn is composed of 6 complex tones, according
to [15], it can be uniquely expressed as a linear combination
of its previous 6 samples, which is

6∑
k=0

akvn−k = 0, a0 = 1, (10)

where {ak}6k=0 are the LP coefficients with ak = a6−k. Al-
ternatively, we can find the frequencies from the roots of

2∑
k=0

ak

(
ejωmk + ejωm(6−k)

)
+ a3e

3jωm = 0, (11)

where ωm = (2m+1)ω with m = 0, 1, 2. It is worth to point
out that the fundamental frequency ω corresponds to the root
with smallest value.

To estimate ω at time index n, denoted by ω(n), we em-
ploy current and the previous (L − 1) samples, which are
{vl}nl=n−L+1. In our study, a sliding window is utilized to
obtain these L samples. Then following the main idea of the
GWLP approach [9], the LP error is

e(n) = X
(n)
1 +X

(n)
2 ã(n), (12)

where ã(n) = [ã1 ã2 ã3]
T and

X
(n)
1 =


vn + vn−6

vn−1 + vn−7

...
vn−L+7 + vn−L+1

 , (13)

X
(n)
2 =


vn−1 + vn−5 vn−2 + vn−4 vn−3

vn−2 + vn−6 vn−3 + vn−5 vn−4

...
. . .

...
vn−L+6 + vn−L+2 vn−L+5 + vn−L+3 vn−L+4

 .

(14)

Employing the GWLP, the estimate a(n), referred to as
â(n), is obtained by minimizing cost function

J(â(n)) =
(
X

(n)
1 +X

(n)
2 ã(n)

)H (
W(n)

)−1 (
X

(n)
1 +X

(n)
2 ã(n)

)
,

(15)

where −1 and H are matrix inverse and conjugate transpose,
respectively, W(n) denotes the weighting matrix, which is

W(n) =
1

σ2
E

{
e(n)

(
e(n)

)H}
=Toeplitz([b9 0L−9]), (16)

where Toeplitz(·) denotes the Toeplitz matrix [16], 0L−15 is
the 1× (L− 15) row vector with all elements 0, and b9 is

b9 = [2 + |a3|2 + 2|a1|2 + 2|a2|2, 2<{a1 + a1a
∗
2 + a2a

∗
3},

2<{a2 + a1a
∗
3}+ |a2|2, 2<{a3 + a1a

∗
2},

2<{a2}+ |a1|2, 2<{a1}, 1]. (17)
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According to (16)–(17), the weighting matrix W(n) is ex-
pressed as a complicated function of a(n). Therefore, to ob-
tain â(n), the cost function J(â(n)) is minimized in an itera-
tive manner. Then the estimate in the `-th iteration, denoted
by â

(n)
` , is obtained by

â
(n)
` =−

{(
X

(n)
2

)H (
W

(n)
`−1

)−1
X

(n)
2

}−1
•(

X
(n)
2

)H (
W

(n)
`−1

)−1
X

(n)
1 , (18)

where • denotes the matrix product and W
(n)
`−1 is computed

using â
(n)
`−1 and (16).

The steps of the proposed method in each batch-mode
data is summarized in Table I.

Table 1: Summary of proposed algorithm

(i) Prepare the batch observation vector {vl}nl=n−L+1;
(ii) Implement X(n)

1 and X
(n)
2 using (13)–(14);

(iii) Initialize â
(n)
0 by−

{(
X

(n)
2

)H
X

(n)
2

}−1 (
X

(n)
2

)H
X

(n)
1 ;

(iv) Obtain W
(n)
`−1 using â

(n)
`−1 and (16) with ` = 1, 2, · · · ;

(v) Compute the estimate at `-th iteration â
(n)
` using (18)

(vi) Repeat (iv)-(v) until the relative error
‖â(n)

` −â
(n)
`−1‖2

‖â(n)
` ‖2

< ε

is reached, where ‖ · ‖2 is `2-norm and ε is tolerance;
(vii) Obtain the fundamental frequency ω̂(n) by finding the

smallest positive root of (11).

It is worth to point out that since the proposed method
is based on the GWLP, the variance and convergence analy-
sis can also be derived similar to [9]. Moreover, as a batch-
mode, the computational complexity of our proposed method
is O(4KNL3) with K being the number of iterations.

3. SIMULATION RESULTS

In this section, computer simulations are conducted to evalu-
ate the performance of the proposed estimator. The signal is
generated according to (1)–(3) with a duration of 0.1s, which
is, length of {un} is N = 500. The parameters are set to
f = 50.2 Hz, Fs = 5000 Hz and φ = π/6, therefore we
have ω = 0.02008π rads−1 according to the definition in
(4). The proposed algorithm is compared with the CLMS
and ACLMS approaches, whose initial values are set to as
the nominal frequency 50 Hz. As a batch-mode method, the
proposed method starts from tn = L/Fs and L is chosen
as 90 according to a number of empirical experiments. The
proposed method employ the stopping criterion that tolerance
ε = 10−6 is reached. The signal-to-noise ratio (SNR) [17] is
set to 15 dB and all results are based on the average of 1000
independent runs.

First, the contamination effect of third and fifth harmon-
ics is studied. In this test, we choose Va = Vb = Vc = 1 and
Va = Vb = Vc = 1.1 for the times before and after t = 0.03s,
respectively. A balanced 20% third harmonic and a balanced
10% fifth harmonic of the fundamental frequency ω are in-
cluded into the voltages from t = 0.03s. Figure 1 shows
that although the fluctuation phenomenon cannot be fully re-
moved, our estimator gives the smallest oscillation amplitude
around the true value among all the algorithms. Furthermore,
once the harmonics appear, the other two methods fail to es-
timate the frequency accurately and the derivations become
larger as time t goes on.
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Figure 1. Frequency estimates under harmonic contamination

Second, the mean square frequency error (MSFE), defined
as E{(ω − ω̂)2}, is employed to investigate the estimation
accuracy of the proposed, CLMS and ACLMS approaches.
Here we only consider one batch data with N = 90 and
Va = Vb = Vc = 1, and the other parameters are the same as
those in the previous test. The MSFE result for SNR varying
from −10 to 20dB is shown in Figure 2, indicating that our
method is superior to the other two methods since its MSE is
very close to the CRLB. The reason the proposed method fails
to achieve the CRLB is that it does not consider the relation-
ship between the fundamental frequency and the harmonics,
which, can be employed to further improve the performance.
The situation of amplitude variation [7] is then introduced to
investigate the general performance of the proposed method.

The changes of voltages and the corresponding estima-
tion results are shown in Figures 3 and 4, respectively. It
is seen in Figure 3 that the amplitudes of three voltages are
Va = Vb = Vc = 1 before t = 0.02s, and Va = 1.05 and
Vb = Vc = 1.1 among 0.02s ≤ t < 0.06s; subsequently, Vc
becomes 0 after t = 0.06s. It can be observed in Figure 4 that
the proposed algorithm performs better than the CLMS and
ACLMS methods for abrupt changes, due to the reason that
the batch-mode method utilizes more information.
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Figure 2. MSFE versus SNR
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Figure 3. Three channel signals in unbalanced system

Finally, the situation of time-varying amplitude, another
type of amplitude variation, is also studied. The ampli-
tude voltages are set to Va = 1 + 0.05 sin(2πft), Vb =
1 + 0.1 sin(2πft) and Vc = 1 + 0.15 sin(2πft) from
t = 0.03s, and the other parameters are the same as those in
the first test. It is shown in Figure 5 that although three meth-
ods oscillate, only the proposed method fluctuates around
the true value with smallest oscillation amplitude. This is
because that employing the property of the trigonometric
function, the signal with time-varying amplitude is similar to
(9) and hence, the proposed method can provide a satisfac-
tory performance. To summarize, for amplitude variation and
harmonics, our proposed algorithm always provides more ac-
curate and reliable estimates than the other algorithms. Even
with some contamination or oscillation exists, the estimate of
our method usually fluctuates around the true value with the
smallest variation.
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Figure 4. Frequency estimates in unbalanced system
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Figure 5. Frequency estimates under amplitude variation

4. CONCLUSION

In this paper, an accurate and reliable batch-mode frequency
estimator is developed, which can monitor the variation of fre-
quency accurately. The signal model of the three-phase sys-
tem is redefined based on harmonics and the GWLP method
is employed to estimate the frequency accordingly. Computer
simulations are conducted in the scenarios of amplitude vari-
ation and harmonics, which shows that our proposed method
is superior to CLMS and ACLMS. In the future, we will uti-
lize the relationship between the fundamental and harmonics,
to improve the performance of our method.
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