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ABSTRACT

State forecasting plays a critical role in power system moni-
toring, by offering system awareness even ahead of the time
horizon, enhancing system observability, and providing effi-
cient identification of the grid topology and link parameter
changes. However, available approaches relying on linear es-
timators or single-hidden-layer feed-forward neural networks
(FNNs), cannot capture long-term nonlinear dependencies in
the voltage time series, and lead to suboptimal performance.
To bypass these hurdles, this paper advocates deep recurrent
neural networks (RNNs) for power system state forecasting.
Deep RNNs capture long-term dependencies, and are easy to
implement. By also leveraging the physics behind power sys-
tems, a novel architecture based on prox-linear nets (RPLN)
is further developed for state forecasting based on past mea-
surements. Simulated tests show improved performance of
the proposed RNN and RPLN predictors when compared to
FNN and vector autoregression based alternatives.

Index Terms— Power system state forecasting, recurrent
neural network, recurrent prox-linear net, data validation.

1. INTRODUCTION

Power grids are currently facing major challenges related to
rapid voltage fluctuations due to massive integration of elec-
tric vehicles, and intermittent generation of renewable energy.
As a result, monitoring and tracking system states becomes
increasingly critical, not only for system protection [15], but
also for energy management [17]. To that end, static power
system state estimation (PSSE) that aims at recovering all
nodal voltages from a subset of related measurements, must
be revisited to account for variations in the state when PSSE
results become available to the system operator [15]. In addi-
tion, PSSE works well only if the grid topology and link pa-
rameters are perfectly known, and there are enough measure-
ments ensuring system observability. To cope with unknown
dynamics and create extra voltage measurements, power sys-
tem state forecasting is well motivated.

Power system state forecasting has been pursued using
Kalman filtering with an identity state transition matrix [2].

This work was supported in part by NSF grants 1508993, 1509040, and
1711471.

978-1-5386-4658-8/18/$31.00 ©2019 IEEE

8092

To improve prediction performance, (block) diagonal transi-
tion matrices that are updated as new measurements become
available, have been also considered [8,11]; see also [9] fora
recent approach to state prediction based on first-order vector
auto-regressive (VAR) modeling. All aforementioned predic-
tors however, assume a linear state transition function; yet the
dependence of system state on previous states is often nonlin-
ear (quadratic with power measurements).

To render nonlinear estimators tractable, state forecasting
based on feed-forward neural networks (FNNs) has been sug-
gested with the state transition map modeled by a single hid-
den layer [3,4]. Once trained off-line using past data, the FNN
enables real-time state forecasting at affordable complexity in
the operational phase. Unfortunately, the number of FNN pa-
rameters grows linearly with the length of input sequences,
which either discourages FNNs from capturing long-term de-
pendencies in time series of voltages, or, lowers forecasting
performance when short-term memory is adopted.

In this context, we advocate deep recurrent neural net-
works (RNNs) that are well poised to forecast power system
states from time-series measurements. Deep RNNs can cap-
ture complex nonlinear dependencies present in time series
data, they involve a fixed number of parameters even with in-
put sequences of variable length, and are easy to implement
using publicly available platforms such as ‘TensorFlow.” Per
time slot ¢, the deep RNN leverages an estimate of the current
state v to predict v;4;. However, estimating v; using opti-
mization methods can be time consuming, which may hamper
scalable and efficient state forecasting. To bypass this limita-
tion, we further introduce what we term recurrent prox-linear
nets (RPLNs), which nicely wed prox-linear nets with RNNss,
to predict system states based on past measurements. With-
out our novel combination with RNNs here for state forecast-
ing, prox-linear nets were recently developed in [19] for static
PSSE by unrolling the corresponding solver [14]. Numerical
tests on real data will be also presented to corroborate the mer-
its of the developed deep RNN and RPLN approaches relative
to existing alternatives.

Regarding notation, lower- (upper-) case boldface letters
represent column vectors (matrices). Symbol " (**) stands for
matrix (conjugate) transposition. Finally, sets are represented
by calligraphic fonts.
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2. METHODOLOGY

Consider a power network comprising N buses, modeled
as a graph G = {N, L}, where NV := {1,...,N} and
L = {(4,7)} € N x N collect all buses and edges, re-
spectively. Per bus n € N, let V,, = [V,|e?% be its
voltage phasor, and S,, := P, + j@Q, its complex power
injection, with P, (@,,) denoting the active (reactive) power
injection. Per line (i,j) € L, let Sifj = Pij; + jQ{j de-
note the complex power flow at the ‘forwarding’ end with
Pif (Q{]) representing the active (reactive) power flow. Like-
wise, let Sfj, Pfj, and ij denote the complex, active, and
reactive power flows at the ‘terminal’ end of edge (4,7).
To perform system state forecasting, suppose that M; sys-
tem variables are measured at time t. For brevity, let z; :=

{IVat P nene, {Pattnenes {@Qnitnene, {PiJ;,t}(i,j)ESt‘”

{QL Yugeer {PS . apees {Qf’j,t}(i,j)eff]T concate-
nate all observed quantities at time ¢, where the sets J\/;f’ and
&7 signify the locations where the corresponding nodal and
line quantities are measured.

Per time ¢, given measurements z; along with corre-
sponding measurement matrices, the system state v, € CV
can be estimated using standard static PSSE modules [15,19].
The obtained time-series {v,}._, can be subsequently used
to predict the system state at the next time step, namely,
vi¢+1 [3]. Mathematically, the estimation and prediction steps
are summarized using the following equations

Vigl = O(Ve, Vi1, Vi, .o, Vipy1) + 1t (1
Zip1 = by (Vigr) + €41 )

where > 1 denotes the number of lagged states used to pre-
dict v¢11; {m¢, €141} account for modeling inaccuracies and
measurement noise; ¢ is an unknown function describing the
state transition map, and h;; (-) is the measurement function
at time t+1. To perform state forecasting, we need to estimate
¢ that we will model using RNNSs, as we present next.

2.1. Deep RNNs for Forecasting and PSSE

RNNs are NNs designed to learn from correlated time series
data. They are not only scalable to long sequence inputs,
meaning sequences with large r, but also capable of dealing
with input sequences of variable length [7]. Given input se-
quence {v,},_, ., and initial state s;_,, an RNN finds the
hidden state vector sequence {s,}%_, . using

S, = f(Wovt +W?%s_ _; + bo) 3)

where f(-) is a pre-selected nonlinear activation function
(such as a sigmoid or a rectified linear unit), that is understood
applied to a vector entry-wise, while matrices WO, W*5 and
vector b” contain time-invariant weight coefficients.

Deep RNNs are RNNs of multiple (> 3) processing lay-
ers, which are responsible for learning representations of

0 S 0 ._ 0._
S;_o = Vy_2 Sy 1 :=Vi_1 S 1=V

Fig. 1: An unfolded deep RNN with no outputs.

time series with hierarchical nonlinear transformations. Deep
RNN-based approaches have dramatically improved upon
the state-of-the-art in diverse sequence processing applica-
tions, such as machine translation and music prediction [7].
One way to construct deep RNNs is by stacking up multiple
recurrent hidden layers one on top of another, as follows [12]

Si— :f(Wl_lslT_l +Wss’lSiil+bl_l), ZZ 1 (4)

where [ is the layer index, s’ denotes the so-called hid-
den state of the [-th layer at time 7 with sg := v,, and
{W! W=s! bl} comprise unknown weights. Fig. 1 (left)
shows the computational graph representing (4) for [ = 2,
with the bias vectors b! = 0 VI for simplicity in depiction,
and the black squares indicating a one-step delay unit. The
unfolded version of this graph is in Fig. 1 (right) with rows
representing layers, and columns corresponding to time slots.

The RNN output can come in various forms, including
one output per time step, or, one output after a sequence of
steps. The latter matches the rth-order nonlinear regression
in (1). Concretely, the output of our deep RNN is given by

Vt+1 _ Woutsi + bout (5)

where Vv;;1 denotes the forecast of vy, 1, and W°% and
b°“! contain weights of the output layer. Given historical
nodal voltage time series, { W4t beut W! W*s! b'} can
be learned end-to-end using a back-propagation solver [7].

Although the focus here is on one-step forecasting, it is
worth stressing that with minor modifications, our proposed
approaches can be adapted to predict the power system states
multiple steps ahead.

So far, we have seen how RNNs enable nonlinear pre-
dictors for power state forecasting, that is how past voltages
and (4) can yield v;41 in (5). In addition, v;4; can be em-
ployed as a prior to aid PSSE when a new measurement z;
becomes available, by solving a regularized problem as

\A/H_l = arg ml? El (Zt+1 —ht+1 (Vt+1)) +>\€2 (Vt+1 _‘v,t+1)
ViH
(6)

where ¢ (-) and ¢5(-) are pre-selected fitting loss functions,
e.g., least-squares or least-absolute-value errors, and A is a
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Fig. 2: Prox-linear net with 6 hidden layers.

regularization parameter. When A > 0, the prediction v,
serves as an additional set of virtual (a.k.a. pseudo) measure-
ments, which are known to improve system observability. The
minimization in (6) is carried using off-the-self PSSE solvers;
see e.g., [15,19]. One remark is now in order.

Remark 1. A forecasting-aided PSSE approach based on
FNNs with a single hidden layer, was introduced by [3]. It can
be viewed as a special case of (6), which broadens the class of
nonlinear predictors with memory by invoking RNNs. As will
be seen in our numerical tests, forecasting performance im-
proves considerably leveraging the deep RNNs. Our regular-
ized PSSE in (6) is also reminiscent of the predictor-corrector
estimator form emerging with dynamic state estimation prob-
lems using Kalman filters.

2.2. Deep RPLNs for Computational Efficiency

The RNN-based approach of the previous section is attractive
provided that (6) can be solved efficiently. But with power
measurements being quadratic functions of voltages, the fit-
ting loss function in (6) is nonconvex. As a result, conver-
gence and performance of iterative solvers relies critically on
the initialization [16]. To cope with these challenges, we de-
signed deep FNNs for PSSE in [19], by approximately lin-
earizing the nonconvex loss in (6) per iteration.

Here we will design related prox-linear nets (PLNs), but
for deep RNNs. To this end, consider the 6-layer PLN in
Fig. 2, where z is the input measurement vector, A/ in all
green blocks represents the pre-selected entry-wise nonlinear
activation functions, such as rectified linear units (ReLU),
‘tanh’, or soft-thresholding operator; while by, {Sk}ézo,
{Wi (1ch§<31’ and {By}i_, contain weights learned in the
training via backpropagation. Relative to conventional FNNs,
the developed PLN features ‘skip-connections’ (the bluish
lines on top of Fig. 2) that directly connect z to intermedi-
ate/output layers. Such connections have been empirically
shown to improve training efficiency of FNNs [10, 19].

After training our PLN off-line using historical and/or
simulated data, we will employ it to approximately solve (6)
in real time. As with the FNNs in [19], this will markedly im-
prove computational efficiency of our RNN-based forecasting
and PSSE. When inferring v;; at time ¢, our PLN-based ap-
proach proceeds in two stages: the first stage yields the PLN-
based estimate V¢; and the second stage uses {V,}._,_

as input to the trained RNN described in Sec. 2 to obtain
Vi+1. Note that PLN and RNN parameters here are learned
separately. Recent studies however, suggest that end-to-end
learning, which refers to the deep learning approaches where
all parameters are learned jointly, leads to improved per-
formance [7, 13]. Prompted by this, we will connect the
PLN output directly with the RNN input, and train the two
networks jointly. Fig. 3 shows our novel network that we
naturally term recurrent prox-linear net (RPLN). Note that
PLN parameters in Fig. 3 are also time-invariant, and they
can be initialized using the learned PLN parameters in [19].

Zi—1 Zy

Fig. 3: An unfolded recurrent prox-linear net with no outputs.

Remark 2. Besides PSSE, state forecasting can aid sys-
tem observability by providing extra (pseudo) measure-
ments [5, 18]. It can also facilitate grid topology and link
parameter identification (see e.g., [6]). Indeed, if a topol-
ogy change between ¢ and ¢ 4+ 1 is not reported, the op-
erator has only outdated information about the state-to-
measurement map h;. () in (2), which adversely affects
Vir1. As aresult, entries of the measurement residual vector
Pt+1 = Ziy1 — hyy1(Vey1) cannot reveal this change. On
the other hand, topology changes have no effect on the fore-
cast v, 1, but certainly influence the so-termed measurement
innovation vector [3]

Vg1 =21 — hyp 1 (Veg). @)

Statistical analysis of v, and p;y1 can unveil and remove
erroneous data; see [3] for an overview. In a nutshell, the
benefits of our RNN and RPLN based forecasting permeate to
critical power system tasks, including PSSE, observability, as
well as identification of topology and link parameter changes.
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Fig. 4: Forecasting errors in voltage magnitudes and angles
for all 57 buses at test instance 100.

3. NUMERICAL TESTS

Performance of our deep RNN and RPLN methods was evalu-
ated using the IEEE 57-bus test system. To obtain the training
and testing time series, real load data provided by the 2012
Global Energy Forecasting Competition ! were used. The se-
ries of loads was subsampled, and subsequently normalized to
match the scale of power demands in the system. The MAT-
POWER toolbox [20] was employed to solve the AC power
flow equations from the normalized load series, to obtain the
actual voltage time series {v,}, and generate the measure-
ment time series {z,} that consists of all active (reactive)
power flows at the forwarding end of each line and voltage
magnitude. Concretely, time series {(z,, v,)}75% were ob-
tained, where the first 80% ({(z-,v,)}%L) time instances
were used for training, while the remaining ones were kept
for testing. The forecasting performance of deep RNN and
RPLN based approaches was assessed in terms of the normal-
ized root mean-square error (RMSE) defined as ||v — v||2/N,
in which v is the actual voltage profile, and v the estimate
found by the deep RNN or RPLN.

Specifically, deep RNNs with [ = 3, r = 10, and ‘tanh’
activation functions were simulated, whereas the RPLN was
formed by combining a 6-hidden-layer PLN with the afore-
mentioned RNN. The number of hidden units per layer in both
RNN and RPLN were kept the same as the input dimension,
namely 57 x 2 = 114. For comparison, the single-hidden-
layer FNN [4], and a VAR(1) model [9] based state forecast-
ing approaches were adopted as benchmarks. Note that the
proposed deep RNN approach has 52,440 parameters, while
the single-hidden-layer FNN has 143,184 parameters. All
NNs were trained using “TensorFlow’ [1] on a NVIDIA Ti-

Thttps://www.kaggle.com/c/global-energy-forecasting-competition-
2012-load-forecasting/data.
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Fig. 5: Forecasting errors in voltage magnitudes and angles
for bus 27 from test instances 100 to 120.

tan X GPU of 12GB RAM. The weight matrices of all NNs
were learned by running the ‘Adam’ optimizer for 100 epochs
with a start learning rate of 1072, The forecasted state us-
ing the VAR(1) model can be expressed in closed form [9].
With regards to estimation performance, the average RMSEs
over 1, 500 testing instances for the deep RNN, RPLN, FNN
and VAR(1) are 0.2172, 0.2694, 0.2958, and 0.6772, respec-
tively. Evidently, these numbers confirm the markedly im-
proved performance of our deep RNN approach. Although
our RPLN approach predicts the voltage directly from past
measurements {z }, it achieves competitive performance rel-
ative to FNN and VAR(1). The true voltages and the fore-
casted ones provided by the deep RNN, RPLN, FNN, and
VAR(1) for all buses on test instance 100 as well as for bus
27 from test instances 100 to 120, are reported in Figs. 4 and
5, respectively. Clearly, the deep RNN yields the best perfor-
mance in both Figs. 4 and 5.

4. CONCLUSIONS

This paper dealt with power system state forecasting us-
ing nonlinear prediction based approaches. Specifically, deep
RNNs and RPLNs were introduced for state forecasting based
on past voltages and past measurements, respectively. The
proposed approaches not only account for the long-term non-
linear dependencies present in time-series inputs, but also
they are computationally inexpensive, easy-to-implement,
and fast. Preliminary tests on the IEEE 57-bus benchmark
system using real load data showcase the merits of our devel-
oped approaches relative to existing alternatives.

Our current and future research agenda includes ‘on-the-
fly’ RNN-based algorithms to account for dynamically chang-
ing environments, and corresponding time dependencies.

8095



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

5. REFERENCES

M. Abadi et al., “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.
org/

A.S.Debs and R. E. Larson, “A dynamic estimator for tracking
the state of a power system,” IEEE Trans. Power App. Syst.,
vol. 89, no. 7, pp. 1670-1678, Sept. 1970.

M. B. Do Coutto Filho and J. C. Stacchini de Souza,
“Forecasting-aided state estimation—Part I: Panorama,” /IEEE
Trans. Power Syst., vol. 24, no. 4, pp. 1667-1677, Nov. 2009.

M. B. Do Coutto Filho, J. C. Stacchini de Souza, and R. S. Fre-
und, “Forecasting-aided state estimation—Part II: Implementa-
tion,” IEEE Tran. Power Syst., vol. 24, no. 4, pp. 1678-1685,
Nov. 2009.

G. B. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and
B. Wollenberg, “Monitoring and optimization for power grids:
A signal processing perspective,” IEEE Signal Process. Mag.,
vol. 30, no. 5, pp. 107-128, Sep. 2013.

G. B. Giannakis, Y. Shen, and G. V. Karanikolas, “Topology
identification and learning over graphs: Accounting for non-
linearities and dynamics,” Proc. IEEE, vol. 106, no. 5, pp.
787-807, May 2018.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-
ing. Cambridge, MA: MIT Press, 2016, http://www.
deeplearningbook.org.

M. Hassanzadeh and C. Y. Evrenosoglu, “Power system state
forecasting using regression analysis,” in Proc. IEEE Power &
Energy Society General Meeting, San Diego, CA, USA, July
2012, pp. 1-6.

M. Hassanzadeh, C. Y. Evrenosoglu, and L. Mili, “A short-term
nodal voltage phasor forecasting method using temporal and
spatial correlation,” IEEE Trans. Power Syst., vol. 31, no. 5,
pp- 3881-3890, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-
ing for image recognition,” in Proc. Conf. Comput. Vision and
Pattern Recognit., Las Vegas, NV, 2016, pp. 770-778.

A. M. Leite da Silva, M. B. Do Coutto Filho, and J. F.
De Queiroz, “State forecasting in electric power systems,” /IEE
Gen. Trans. Dist., vol. 130, no. 5, pp. 237-244, Sept. 1983.

R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to con-
struct deep recurrent neural networks,” in Proc. Intl. Conf. on
Learning Representations, Banff, Canada, Apr. 2014.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:
Towards real-time object detection with region proposal net-
works,” in Proc. Adv. Neural Inf. Process. Syst., Montreal,
Canada, Dec. 2015.

G. Wang, G. B. Giannakis, and J. Chen, “Robust
and scalable power system state estimation via compos-
ite optimization,” IEEE Trans. Smart Grid, 2019, DOLIL:
10.1109/TSG.2019.2897100.

G. Wang, G. B. Giannakis, J. Chen, and J. Sun, “Distribution
system state estimation: An overview of recent developments,”
Front. Inf. Technol. Electron. Eng., vol. 20, no. 1, pp. 4-17, Jan.
2019.

8096

[16]

[17]

(18]

[19]

[20]

G. Wang, G. B. Giannakis, Y. Saad, and J. Chen, “Phase re-
trieval via reweighted amplitude flow,” IEEE Trans. Signal
Process., vol. 66, no. 11, pp. 2818-2833, Jun. 2018.

L. Zhang, V. Kekatos, and G. B. Giannakis, “Scalable electric
vehicle charging protocols,” IEEE Trans. Power Syst., vol. 32,
no. 2, pp. 1451-1462, Mar. 2017.

L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power
system state estimation and forecasting via deep neural net-
works,” arXiv:1811.06146, Nov. 2018.

——, “Real-time power system state estimation via deep un-
rolled neural networks,” in Proc. Global Conf. on Signal and
Info. Process., Anaheim, CA, USA, Nov. 2018.

R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas,
“MATPOWER: Steady-state operations, planning and analysis
tools for power systems research and education,” IEEE Trans.
Power Syst., vol. 26, no. 1, pp. 12-19, Feb. 2011.



		2019-03-18T10:54:44-0500
	Preflight Ticket Signature




