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ABSTRACT

This paper addresses detection of a reverse engineering (RE)
attack targeting a deep neural network (DNN) image clas-
sifier; by querying, RE’s aim is to discover the classifier’s
decision rule. RE can enable test-time evasion attacks, which
require knowledge of the classifier. Recently, we proposed
a quite effective approach (ADA) to detect test-time evasion
attacks. In this paper, we extend ADA to detect RE attacks
(ADA-RE). We demonstrate our method is successful in de-
tecting “stealthy” RE attacks before they learn enough to
launch effective test-time evasion attacks.

1. INTRODUCTION

Recently, there has been great interest in identifying vulner-
abilities in machine learning (ML)) systems. Test-time eva-
sion attacks (TTEAs) [3, 4, 5, 6, 7, 8] add subtle perturba-
tions to legitimate test-time samples' to “fool” a classifier into
making incorrect decisions relative to those of a human be-
ing. Related work has demonstrated the fragility of DNNs
for some domains in the presence of modest data perturba-
tions, e.g. changing the tempo in music genre classification
[12]. TTEAs should be taken seriously because they could
allow illegitimate access to a building, data, or a piece of ma-
chinery. They could also lead e.g. to a radiologist looking
at “doctored” cancer biopsy images (that trick automated pre-
screening systems). Test-time attacks require knowledge of
the classifier under attack. RE attacks [10, 11] involve query-
ing a classifier to discover its decision rule. Thus, one primary
application of RE is to enable TTEAs.

Several recent RE attack works are [10] and [11]. [10]
demonstrates that, with a relatively modest number of queries
(perhaps ~ ten thousand), using the classifier’s answers on
query examples as supervising ground truth labels, one can
learn a surrogate classifier on a given domain that closely
mimics an unknown (black box) classifier. One weakness of
[10] is that it neither considers very large (feature space) do-
mains nor very large networks (DNNs) — orders of magnitude
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more queries may be needed to reverse-engineer a DNN on
a large-scale domain. However, a much more critical weak-
ness stems from one of the greatest purported advantages
in [10] — the authors emphasize their RE does not require
any actual samples from the domain®. Their queries are ran-
domly drawn, e.g. uniformly, over the given feature space.
What was not recognized in [10] is that this random query-
ing makes the attack easily detectable — randomly selected
query patterns will typically look nothing like legitimate ex-
amples from any of the classes — they are very likely to be
extreme outliers, of all the classes. Each such query is thus
individually highly suspicious — thus, even ten, let alone ten
thousand such queries will be trivially anomaly-detected as
jointly improbable under a null distribution (estimable from
the training set defined over all the classes from the domain).
Even if the attacker employed bots, each of which makes a
small number of queries, each bot’s random queries should
be easily detected as anomalous, likely associated with an RE
attack. On the other hand, [11] propose an RE attack that
does require some initial known data from the domain. It
uses this to create more legitimate, “stealthier” queries, over
a series of query stages, with the resulting labeled data used
to train a substitute classifier used to launch a TTEA.

Recently, an approach was developed which achieves
state-of-the-art results in detection of TTEAs, Anomaly De-
tection of Attacks (ADA) [7, 8]. Since this approach is an
anomaly detector for the image domain of interest, it in prin-
ciple should also be applicable to detect query images that
are not representative of real images from the domain. How-
ever, since the querying in [11] is stealthy (as it is based on
perturbations of real images from the domain), it is not ob-
vious their querying is detectable. However, here we extend
ADA to indeed detect the RE querying from [11], and thus
demonstrate the potential to prevent TTEAs even before they
are launched.

This paper is organized as follows. In Sec.2, we describe
the reverse engineering attack of [11]. In Sec.3, we give
background on ADA. In Sec.4, we discuss our extension of
ADA for reverse engineering attacks. Experimental results

2For certain sensitive domains, or ones where obtaining real examples is
expensive, the attacker may not have access to legitimate examples.
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for DNN classifiers of images are given in Sec.5. Finally,
conclusions are drawn in Sec.6.

2. RE ATTACK GIVEN DOMAIN SAMPLES

The RE procedure in [11] is summarized as follows. First, the
adversary collects a small set of representative labeled sam-
ples from the input domain as an initial training set Sy and
uses this to train an initial substitute classifier. Then, there is
stagewise data collection and retraining, over a sequence of
stages. In each, the adversary augments the current training
set by querying the classifier with the stage’s newly generated
samples [11], i.e.,

Spa1 = {z+A-sgn(V(max PP [C = ¢[z])) : z € S }US

where k is the current stage index and P{*) [C = c|z] is the
current substitute class posterior model. The substitute classi-
fier is then retrained using Si1. Each successive stage crafts
query samples closer to the classifier’s true boundary, which
is helpful for RE learning but which also makes these sam-
ples less class-representative and thus more detectable. Once
a sufficiently accurate substitute classifier is learned, the ad-
versary can launch a TTEA using one of the existing TTEA
attacks, e.g. [4, 3, 5]. Here, one starts with an original image
from the domain, from a source class cg, perturbs the image,
using the substitute classifier’s gradient information, to push
across the decision boundary to a destination class, cqg # cs.
The perturbed image is then submitted to the actual classifier
as a TTEA instance.

3. DETECTION OF TEST-TIME EVASIONS (ADA)

3.1. Basic ADA

ADA detection is grounded in the premise that an attack ex-
ample in general will exhibit too much atypicality (evaluated
on null distributions estimated from the class training sets)
w.r.t. cq and too little null atypicality w.r.t. c,>. Given a test
sample z, basic ADA works as follows:

1. Determine the MAP (destination) class under the deep
neural network: ¢4 = argmax_ P[C = c|z].

2. Compute z = g, (z), the vector of outputs from the k-th
layer of the DNN.

3. Estimate the source class ¢, based on the null model:
s = argmax .., fz(r)lc(2)-

4. Form two probability vectors P(k) and Q(k) where

P(k) = {pofzk)ci(2); Pofz(k)e, (2)} and Q(k) = {qo P[C =

cdlz], @ P[C = cs|z]}. po and qo are normalizers to make
P(k) and Q(k) probability mass functions.
5. Report a detection if Dk, (P(k)||Q(k)) > t where

3This premise is plausible because the attacker tries to be stealthy — to
fool the classifier while not fooling a human being (or an anomaly detector).
In so doing, the perturbed image, while classified to cq, still has to “look”
like it comes from cs.

Dxy,(+]]-) is the Kullback Leibler(KL) Divergence. The KL
distance will be large when z exhibits atypicality w.r.t. the
null of ¢4 and typicality w.r.t. the null of c;.

3.2. Ultimate ADA Method Development: L-AWA-maxKL

The ultimate ADA method is based on the following exten-
sions/improvements.

Maximizing KL distance over multiple layers: Rather than
measure KL distance at one layer, we can compute KL dis-
tance at different layers and detect based on the maximum KL
distance over these layers.

Null modelling for Different Neuron Activations: It was
demonstrated that Gaussian mixture modelling is suitable
for sigmoidal and linear layers, with log-Gaussian mixture
modelling appropriate for RELU layers[7, 8].

Exploiting source class uncertainty and class confusion: Ba-
sic ADA hard-estimates cs. More information is preserved if
one reflects source class uncertainty, via the probabilities

fZIc(é)

P[Os N C] N Zc’;ﬁcd fZ\C' (é)

Ve 75 Cd.

Going further, if we have knowledge of the class confusion
matrix [P[C* = i|C' = j]], then a tuple (cs, ¢q) with a small
class confusion probability P[C* = ¢4|C' = ¢,] may indicate
an attack. As a result, we weight KL distance by m.
This increases the decision statistic for those pairs that are
unlikely to occur. Combining both techniques, we construct

an average weighted ADA decision statistic via

S pio = g 2P
P[C* = ¢4|C = (]

c#cq

We can evaluate this statistic at different layers and then apply
a max rule over the layers.

Exploiting local features: Rather than jointly null-model all
features from a layer, instead we can null-model all possi-
ble feature pairs within this layer. This accounts for possible
sparsity of an attack’s anomalous signature within a layer®.
For layer [ with IV features, there are N; = (];' ) feature pairs.
For each, denoted (Z,, Z;)(ith and jth features from layer ),
we can evaluate average weighted ADA statistics. Moreover,
each of these low-order AW-ADA statistics can be weighted
by the magnitude of the DNN weights from Z; and Z; to the
next layer of the DNN. The DNN weightings are properly nor-
malized and denoted 3; and 3;. The feature pairs with higher
B; and 3; have a stronger impact in classifier decision-making
and thus atypicalities involving them should be given greater
weight. Accordingly, for each layer we form a weighted ag-
gregation of all low-order AW-ADA statistics, expressed for

4Joint atypicality of all features in a layer may be weak if only a few
features exhibit strong atypicality.
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layer [ as L-AWA-ADA®):

1 Dir(PY11Q)
N 2 2 PilC = e ==
1,] CFCa

Here P;; and Pl-(jc) are feature-pair dependent since they are
calculated using null density modelling f(-), which is feature-
pair dependent.; is the sum of the magnitudes of the DNN
weights that conduct from feature ¢ in layer [ to all neurons in
the next layer, [ + 1, normalized by the maximum such sum
over all features in layer I. 1/N; is a necessary normalizer
to compare distance statistics across layers fairly, since dif-
ferent layers have different numbers of feautures (neurons).
Again we apply a max-KL rule on L-AWA-ADA() statistics,
with the resulting method dubbed L-AWA-ADA-maxKL. This
is the ultimate ADA detection method (achieving the best re-
sults), described in more detail in [7, 8].

4. PROPOSED DETECTION APPROACH FOR
REVERSE ENGINEERING ATTACKS

Since in RE attacks the attacker submits batches of query im-
ages to the classifier, we modify L-AWA to jointly exploit
batches of images in seeking to detect attacks (in this case RE
query attacks, not TTEA attacks). Several schemes for ag-
gregating L-AWA-ADA decision statistics, produced for in-
dividual images in a batch, are investigated: i) arithmetically
averaging the L-AWA statistic over all images in a batch; ii)
maximizing the L-AWA statistic over all images in a batch;
iii) Dividing a batch into mini-batches, for example a batch of
50 images could be divided into mini-batches of size 5. For
each mini-batch, apply either scheme i) or ii). Then, make a
detection if any of the mini-batches yields a detection statistic
greater than the threshold(union rule). This latter scheme will
be seen to perform the best.

5. EXPERIMENTAL SETUP AND RESULTS

We experimented on MNIST. This is a dataset with 60,000
grayscale images, representing the digits O through 9. There
are 50,000 training images and 10,000 test images. As a DNN
classifier, we used Lenet-5. We also used the Lenet-5 struc-
ture for training the RE attacker’s substitute network. For S
we used 150 MNIST samples(15 from each class). We ap-
plied 5 stages of retraining (6 training stages) of the substitute
DNN and chose A = 0.1. The number of queries generated by
the 5 stages were: 150,300,600, 1200 and 2400. Fast gradient
sign method(FGSM) is used to craft adversarial samples. We
used mini-batches of size 5 in experiments. Two maxpooling
layers and the penultimate layer were used in generating the
ADA detection statistics.For evaluating RE detections ROC-
AUC, we used two data sources i) the 10,000(non-query) test
images and ii)the query images produced in a given stage.

For a given batch size, to crate a pool of samples used for
evaluating ROC-AUC, we randomly drew batches from the
two sources many times with replacement. The number of
samples created was batch-size dependent. As one example
for batch size 20, we created 427 non-query batches(samples)
and 361 query batches(samples). We evaluated detection ac-
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Fig. 1: RE detection ROC AUC at different stages versus
batch size for arithmetic averaging scheme.
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Fig. 2: RE detection ROC AUC at different stages versus
batch size for mini-batch union aggregation scheme.

curacy for stages 4-6 in our experiments. The reason is as fol-
lows: the substitute classifier’s accuracy and the resulting suc-
cess rate of TTEA attacks both grow with the stage number;
by stage 4, these accuracies are 0.69 and 0.8, respectively, as
shown in Figure 3. Figure 1 shows that good detection accu-
racy is achieved using the arithmetic averaging scheme, with
the ROC AUC increasing with batch size and with the attack
stage, as expected(slightly inferior performance is achieved
by max rule). However, the ROC AUC appears to asymptote
at about 0.95, which we would not expect — we would hope
perfect detection accuracy could be approached with increas-
ing batch size, especially in the latter stages. This better be-
haviour is exhibited by the mini-batch scheme with union de-
tection rule in Figure 2. Thus, this latter aggregation scheme
is the most promising one.
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Fig. 3: attack sucess rate and classifier accuracy versus RE
stage

6. CONCLUSION

We have developed an anomaly detection scheme that is very
effective at detecting “stealthy” RE attacks on DNN image
classifiers. This is potentially important to protect black box
classifier information and to prevent TTEAs. Detection of
other types of attacks, for other application domains, may be
considered in future.

7. REFERENCES

[1] B. Miller, A. Kantchelian, S. Afroz, R. Bachwani,
E. Dauber, L. Huang, M.C. Tschantz, A.D. Joseph, and
J.D. Tygar, “Adversarial active learning,” in Proc. Work-
shop on Artificial Intelligence and Security (AlSec),
2014.

[2] D.J Miller, X. Hu, Z. Qiu, and G. Kesidis, “Adversarial
learning: a critical review and active learning study,” in
Proc. IEEE MLSP, Tokyo, Sept. 2017.

[3]1 N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B.
Celik, and A. Swami, “The limitations of deep learn-
ing in adversarial settings,” in Proc. Ist IEEE European
Symp. on Security and Privacy, 2016.

[4] 1. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples,” in /CLR, 2015.

[5] N. Carlini and D. Wagner, “Towards Evaluating the Ro-
bustness of Neural Networks,” in IEEE Symposium on
Security and Privacy, 2017.

[6] N. Carlini and D. Wagner, “Adversarial Examples
Are Not Easily Detected: Bypassing Ten Detection
Method,” in Proc. ACM AlSec, Dallas, Nov. 2017.

[7] DJ. Miller, Y. Wang, and G. Kesidis, “When
Not to Classify: Anomaly Detection of At-
tacks (ADA) on DNN Classifiers at Test Time,’
http://arxiv.org/abs/1712.06646, Dec. 18, 2017.

8066

[8] DJ. Miller, Y. Wang, and G. Kesidis, “Anomaly De-
tection of Attacks on DNN Classifiers at Test Time,” in
Proc. IEEE MLSP, Sept. 2018.

[9] D.T. Davis and J.-N. Hwang, “Solving Inverse Problems
by Bayesian Neural Network Iterative Inversion with
Ground Truth Incorporation,” IEEE Trans. Sig. Proc.,
vol. 45, no. 11, Nov. 1997.

[10] F. Tamer, F. Zhang, A. Juels, M.K. Reiter, and T. Ris-
tenpart, “Stealing Machine Learning Models via Pre-
diction APIs,” in USENIX Security Symposium, Austin,
TX, Aug. 2016.

[11] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z.B.
Celik, and A. Swami, “Practical black-box attacks
against machine learning,” in ACM Asia Conference on
Computer and Communications Security, 2017.

[12] C. Kereliuk, B.L. Ahrendt, and J. Larsen, “Deep learn-
ing, audio adversaries, and music content analysis,” in
Applications of Signal Processing to Audio and Acous-
tics (WASPAA), 2015 IEEE Workshop on (pp. 1-5).
1IEEE.



		2019-03-18T11:18:59-0500
	Preflight Ticket Signature




